
A partially unsupervised cascade classifier for the analysis of
multitemporal remote-sensing images

Lorenzo Bruzzone *, Diego Fern�aandez Prieto

Department of Information and Communication Technologies, University of Trento, Via Sommarive 14, Trento I-38050, Italy

Abstract

A partially unsupervised approach to the classification of multitemporal remote-sensing images is presented. Such an

approach allows the automatic classification of a remote-sensing image for which training data are not available,

drawing on the information derived from an image acquired in the same area at a previous time. In particular, the

proposed technique is based on a cascade-classifier approach and on a specific formulation of the expectation-maxi-

mization (EM) algorithm used for the unsupervised estimation of the statistical parameters of the image to be classified.

The results of experiments carried out on a multitemporal data set confirm the validity of the proposed ap-

proach. � 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the past few years, there has been a growing
interest in the use of remote-sensing systems for a
regular monitoring of the earth’s surface. In this
context, images acquired on the same area at dif-
ferent times (i.e., multitemporal images) represent
a valuable source of information for the observa-
tion of the temporal behavior of the land-cover
classes that characterize a given region of interest.
From an operational point of view, the monitoring
process can be carried out by applying specific

supervised classification techniques to the analysis
of multitemporal data (Swain, 1978; Kalayeh and
Landgrebe, 1986; Khazenie and Crawford, 1990;
Jeon and Landgrebe, 1992, 1999; Bruzzone et al.,
1999). Unlike standard algorithms for the classi-
fication of single-date images, such techniques ex-
ploit the temporal correlation between images
in order to increase the classification accuracy (a
description of these techniques is provided in
(Bruzzone et al., 1999)).

A problem arising from the above-mentioned
supervised approaches to multitemporal remote-
sensing data analysis is that, in general, they re-
quire the availability of suitable training data for
each image to be categorized. Unfortunately, in
most applications, this requirement is not satisfied.
In fact, gathering a sufficient number of training
samples for each specific image considered, by
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either photo-interpretation or the collection of
‘‘ground truth’’ information, is very expensive in
terms of time and economic cost. Therefore, in
many cases, it is not possible to rely on training data
for each single image in a multitemporal data set.
This prevents the generation of the corresponding
land-cover maps by supervised approaches and,
consequently, may affect the accurate and efficient
monitoring of the considered site.

In this paper, we propose a partially unsuper-
vised approach to the classification of temporal
series of multispectral images that overcomes the
aforesaid problem. In particular, it allows the au-
tomatic classification of a remote-sensing image,
for which training data are not available, drawing
on the information derived from earlier observa-
tions. The authors already faced this problem in
(Bruzzone and Fern�aandez Prieto, 2001), where an
unsupervised method for the retraining of a max-
imum-likelihood (ML) classifier was described.
The present work is an extension to such a meth-
od. In particular, the proposed technique, unlike
the previous one, makes use of a cascade-classifier
approach to the categorization of multitempo-
ral remote-sensing images, thus allowing the ex-
ploitation of the temporal correlation between
successive scenes. This approach is based on a
specific formulation of the expectation-maximiza-
tion (EM) algorithm (Dempster et al., 1977) in
terms of the joint density function of pairs of se-
quential images. This formulation of the EM al-
gorithm allows the unsupervised estimation of
both the class-conditional density functions in the

second-date image (for which training data are
not available) and the prior joint probabilities of
classes in the two images considered. An interest-
ing peculiarity of the proposed technique lies in
the capability to include in the estimation process
additional prior information (if available) about
the possible land-cover transitions occurred in the
area of interest between the considered dates; this
may result in a more robust estimation procedure.

2. General formulation of the problem.

Let X1 ¼ fx11; x12; . . . ; x1I�Jg and X2 ¼ fx21; x22; . . . ;
x2I�Jg denote two coregistered multispectral images
(of dimensions I � J ) acquired in the same geo-
graphical area (area of interest) at two different
times, t1 and t2, respectively (Table 1 provides a
summary of the notations used in the paper). Let
xij be the feature vector associated with the jth pixel
of the ti ði ¼ 1; 2Þ image, and let X ¼ fx1;x2; . . . ;
xCg be the set of C land-cover classes that char-
acterize the geographical area. In developing our
approach, we make two important assumptions,
which are considered in several approaches to
multitemporal classification (Jeon and Landgrebe,
1999; Solberg, 1999). One implies that the land-
cover classes present in the area of interest are the
same at the two different times (only the spatial
distributions of such classes may change over
time). The other implies that the two images are
acquired in similar periods of the year in order to
avoid incoherent responses from the correspond-

Table 1

Legend of notations used in this paper

Symbol Description

X i Image acquired at the time ti
Xi Multivariate random variable that represents the pixel values in X i

I � J Dimensions of the selected images

xij Feature vector associated with the jth pixel of X i

X Set of land-cover classes that characterize the region of interest

xi ith land-cover class

T1 Training set available for time t1
M2 Required land-cover map at time t2
l2j Classification label of the jth pixel at time t2
pðxijjxkÞ Value of the conditional probability density function for pixel xij, given the class xk

Pðxn;xkÞ Prior joint probability of the pair of classes ðxn;xkÞ
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ing types of surface covers. In fact, land-cover
classes, especially vegetation classes, may present
different spectral behaviors depending on the
particular season considered.

Let us assume that only the training set T1,
corresponding to the first image X1, is available.
We aim at classifying the area of interest at the
time t2 by exploiting the information derived from
the previous observations X1 and the corre-
sponding training set T1. This process involves the
generation of a land-cover map M2 ¼ fl21; l22; . . . ;
l2I�Jg, where l2j 2 X is the classification label of the
jth pixel at the time t2.

We face this problem by applying the Bayes rule
for the minimum error to a ‘‘cascade classifier’’
(Swain, 1978), i.e.

l2j ¼ xm 2 X if and only if

P ðxmjx1j ; x2j Þ ¼ max
xk2X

P xkjx1j ; x2j
� �n o

; ð1Þ

where P ðxkjx1j ; x2j Þ is the value of the probability
that the jth pixel belongs to class xk at t2, given
the observations x1j and x2j . Under the conven-
tional assumption of class-conditional indepen-
dence (Swain, 1978; Bruzzone et al., 1999), the
above decision rule can be rewritten as:

l2j ¼ xm 2 X if and only if

XC
n¼1

p x1j jxn

� �
p x2j jxm

� �
P xn;xmð Þ

¼ max
xk2X

XC
n¼1

p x1j jxn

� �
p x2j jxk

� �
P xn;xkð Þ

( )
;

ð2Þ

where pðxijjxkÞ is the value of the conditional
density function for the pixel xij, given the class
xk 2 X, and P ðxn;xkÞ is the prior joint probability
of the pair of classes ðxn;xkÞ. The latter term takes
into account the temporal correlation between the
two images.

On the basis of the previous expression (2), the
classification of X2 involves the estimation of
the class-conditional densities at time t1, the class-
conditional densities at time t2, and the prior joint
probability for each possible pair of classes. These
estimates cannot be obtained by using classical

supervised techniques, as the lack of training data
for the second image X2 prevents the conventional
application of such techniques. In this context, we
adopt a partially unsupervised approach to the
estimation of such probabilistic terms. On the one
hand, the class-conditional densities at time t1 can
be estimated from the available training set T1 by
using a supervised approach to density estimation
problems (Duda and Hart, 1973). On the other
hand, an unsupervised approach based on the EM
algorithm (Dempster et al., 1977) is proposed for
the estimation of the remaining terms: the class-
conditional densities at time t2 and the prior joint
probabilities of classes.

3. The proposed partially unsupervised estimation

procedure

The proposed estimation procedure is based on
the observation that, under the assumption of
class-conditional independence over time, the joint
density function of images X1 and X2 (i.e., p(X1;
X2)) can be described as a mixture density with
C � C components (as many components as pos-
sible pairs of classes):

pðX1;X2Þ ¼
XC
n¼1

XC
m¼1

pðX1;X2jxn;xmÞPðxn;xmÞ

ffi
XC
n¼1

XC
m¼1

pðX1jxnÞpðX2jxmÞP ðxn;xmÞ;

ð3Þ

where X1 and X2 are two multivariate random
variables that represent the pixel values (i.e., the
feature vector values) in X1 and X2, respectively.
In this context, the estimation of the above terms
becomes a mixture density estimation problem,
which can be solved by applying the EM algorithm
(Dempster et al., 1977; Moon, 1996; Shahshahani
and Langrebe, 1994; Bruzzone et al., 1999). In
particular, we propose an iterative technique based
on a specific formulation of the EM algorithm in
terms of the prior joint probabilities of classes in
the two images considered. This formulation al-
lows one to derive accurate estimates of both the
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class-conditional densities of classes pðX2jxmÞ at
time t2 and the prior joint probabilities P ðxn;xmÞ.

In order to further explain the presented tech-
nique, let us assume that the probability density
function of each class can be described by a
Gaussian distribution (i.e. by a mean vector l and
a covariance matrix R). Under this common as-
sumption (widely adopted for multispectral image
classification problems), the estimation of the
above-mentioned statistical terms involves the
computation of the following vector parameter #:

# ¼ l2
1;R

2
1; . . . ; l

2
C;R

2
C; P x1;x1ð Þ; P x1;x2ð Þ; . . . ;

�
P xC;xC
1ð Þ; P xC;xCð Þ�: ð4Þ

In this context, it can be proved that the recursive
equations to be used in order to estimate the re-
quired parameters are (Dempster et al., 1977):

½l2
m�

tþ1 ¼
PI�J

j¼1
PC

n¼1 P
tðxn;xmjx1j ; x2j Þ

n o
x2jPI�J

j¼1
PC

n¼1 P tðxn;xmjx1j ; x2j Þ
n o ; ð5Þ

½R2
m�

tþ1¼
PI�J

j¼1
PC

n¼1P
tðxn;xmjx1j ;x2j Þ

n o
jjx2j
½l2

m�
tjj2PI�J

j¼1
PC

n¼1P tðxn;xmjx1j ;x2j Þ
n o ;

ð6Þ

P ðxn;xmÞtþ1 ¼
PI�J

j¼1 P
tðxn;xmjx1j ; x2j Þ
I � J

; ð7Þ

where, the superscripts t and t þ 1 refer to the
values of the parameters at the current and next
iterations, respectively. Under the adopted as-
sumption of class-conditional independence in the
time domain, the term P tðxn;xmjx1j ; x2j Þ can be ex-
pressed as

P tðxn;xmjx1j ; x2j Þ

¼
pðx1j jxnÞptðx2j jxmÞP tðxn;xmÞPC

n¼1
PC

m¼1 pðx1j jxnÞptðx2j jxmÞP tðxn;xmÞ
:

ð8Þ

It is worth noting that the terms associated with
the class-conditional densities pðX1jxnÞ at time t1
do not present any superscript, as their values are
estimated by using a classical supervised procedure
and remain fixed during the estimation process.

It is possible to prove (Dempster et al., 1977)
that, at each iteration, the estimated parameters
evolve from their initial values, thus providing an
increase in the log-likelihood function LðX1;X2j#Þ:

LðX1;X2j#Þ

¼
XI�J

j¼1
log

XC
n¼1

XC
m¼1

pðx1j jxnÞpðx2j jxmÞP ðxn;xmÞ
( )

ð9Þ

until a local maximum is reached. The estimates of
the parameters obtained at convergence and those
achieved by the classical supervised procedure are
then substituted into (2) in order to derive the re-
quired set of pixel labels M2.

Concerning the initialization of the considered
statistical terms, we adopt the following strategies.
The initial values of the parameters that charac-
terize the class-conditional densities at time t2 are
obtained by exploiting the corresponding values
estimated at time t1 by supervised learning, as
proposed in (Bruzzone and Fern�aandez Prieto,
2001). Concerning the prior joint probabilities,
two possible initialization strategies can be fol-
lowed depending on the prior knowledge available.
One strategy can be used in the cases where no
prior knowledge exists concerning the possible
land-cover transitions that occurred in the area
of interest between the two dates considered. In
particular, this strategy assigns equal probabili-
ties to each pair of classes. The other strategy can
be adopted when the end-user relies on prior in-
formation about the temporal evolution of
some land-cover classes. Such information can be
translated into probabilistic terms by determin-
ing if some of the possible land-cover transitions
are likely to have occurred between the two con-
sidered dates (e.g., in many cases, urban areas do
not change to a forest during short and medium-
term time periods; this means that P ðurban;
forestÞ ¼ 0). In particular, we can impose explicit
constraints on the permitted values of the prior
joint probabilities of classes P ðxn;xmÞ. Such con-
straints may be integrated in the proposed esti-
mation process by fixing the values of the related
prior joint probabilities on the basis of the existing
knowledge. Then these values remain constant

1066 L. Bruzzone, D. Fern�aandez Prieto / Pattern Recognition Letters 23 (2002) 1063–1071



during the iterative estimation process; only the
values of the prior joint probabilities for which no
information is available are allowed to vary. This
results in a more robust and more accurate esti-
mation process.

4. Experimental results

In order to assess the effectiveness of the
proposed technique, different experiments were
carried out on a data set composed of two multi-
spectral images acquired by the Thematic Mapper
(TM) sensor of the Landsat 5 satellite. The selected
test site was a section (412� 382 pixels) of a scene
including Lake Mulargias on the Island of Sardi-
nia, Italy. The two images used in the experiments
were acquired in September 1995 (t1) and in July
1996 (t2). Fig. 1 shows channels 5 of both images.
The available ground truth was used to derive a
training set and a test set for each image (see Table
2). In particular, five classes of interest (i.e., pas-
ture, forest, urban area, water body, and vine-
yard), which characterize the study area over time,
were identified. To carry out the experiments, we
assumed that only the training set associated with
the image acquired in September 1995 was avail-
able.

We applied the proposed cascade-classifier ap-
proach to the above-described images in order to

analyze the July 1996 image by using the estimates
of the statistical parameters obtained for the Sep-
tember 1995 image (thanks to the available Sep-
tember 1995 training set), but without using the
July 1996 training set. In our experiments, the
assumption of normal distribution was made for
the density functions of the classes (this was a
reasonable assumption, as we considered TM
images).

The mean values and the covariance matrices of
the Gaussian density functions of the classes at t1
were computed by using the related training set.
Concerning the parameters of the density func-
tions of the classes at t2 and the prior joint prob-
abilities of the classes, they were estimated in an
unsupervised way by using the proposed formu-
lation of the iterative EM algorithm. In the
first experiment, the parameters of the density

Table 2

Number of patterns in the training and test sets of both the

September 1995 and July 1996 images

Land-cover classes Number of patterns

Training set Test set

Pasture 554 589

Forest 304 274

Urban area 408 418

Water body 804 551

Vineyard 179 117

Overall 2249 1949

Fig. 1. Bands 5 of the Landsat-5 TM images utilized for the experiments: (a) image acquired in September 1995; (b) image acquired in

July 1996.
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functions of the classes at t2 were initialized with
the values achieved at t1, whereas the values of the
prior joint probabilities of the classes were as-
sumed to be the same (no prior information on the
land-cover transitions were used in this experi-
ment). The EM algorithm converged in 11 itera-
tions (258 s on a Sun Workstation Ultra-Sparc 80).
At the end of the iterative process, the resulting
estimates were used to perform the classification
of the July 1996 image. The results obtained are
shown in Table 3. As one can see, we obtained
a high overall classification accuracy at t2 (i.e.,
91.48%), even though the training set was not
used. The value of the coefficient of accuracy K
(i.e., 0.88) also confirms the effectiveness of the
presented technique.

In order to better understand the capabilities of
the proposed approach, we carried out a second
experiment in which we exploited some a priori
information in the initialization of the prior joint
probabilities of the classes and, consequently, in
the estimation process. In particular, as in the
considered region no changes affected the vine-
yard class between the two dates, we assumed
P ðvineyard; vineyardÞ ¼ P ðvineyardÞ, whereas all
the remaining prior joint probabilities related
to the vineyard class were fixed to zero (e.g.,
P ðvineyard; urbanÞ ¼ 0, P ðurban; vineyardÞ ¼ 0,
etc.). The results obtained by using the above-
mentioned prior information (see Table 3), show a
slight increase in the overall classification accuracy
(i.e., about 1%) and a sharp increase in the clas-

sification accuracy of the vineyard class (i.e., about
4.3%). In addition, the value of the coefficient
of accuracy K increased significantly from 0.88
to 0.90. This behaviour is also confirmed by a
comparison with the accuracies provided by
the previous version of the method (Bruzzone and
Fern�aandez Prieto, 2001), where no prior knowl-
edge was used. For example, with respect to that
method, an increase in the classification accuracy
of the vineyard class of about 2.6% was obtained
(see Bruzzone and Fern�aandez Prieto, 2001).

A further insight into the capabilities of the
proposed technique can be derived from Tables
4(a) and (b), where the confusion matrices that
resulted from the aforementioned experiments are
shown. In the matrices, the true land-cover classes
(determined according to the ground truth) are
given in the rows, and the land-cover classes
identified with the proposed technique are given in
the columns. Therefore, the values on the diago-
nals of such matrices represent correctly recog-
nized land-cover classes, while the other values
represent errors on the recognition of the classes.
As one can see, the use of the prior informa-
tion about the vineyard class (i.e., Pðvineyard;
vineyardÞ ¼ PðvineyardÞ) in the estimation process
resulted in a significant reduction in the omission
errors for such a class.

In the third experiment, for the sake of com-
parison, a supervised ML classifier was trained
and subsequently tested on the July 1996 image by
the classical approach (i.e., by using a training set
for the supervised parameter estimation). The re-
sults obtained are presented in Tables 5 and 6,
where the classification errors and the confusion
matrix are given, respectively. As one can see, the
overall classification accuracies achieved by the
proposed approach on the July test set (91.48%
and 92.51% in Table 3) are very similar to that
yielded by the supervised ML classifier (92.66%
in Table 5). In greater detail, the accuracies are
comparable for all the classes. In addition, the
value of the coefficient of accuracy K obtained by
the proposed technique when the prior knowledge
was used (i.e., 0.90) was equal to the value ob-
tained by the classical supervised approach.

Finally, a further experiment was carried out to
assess the accuracies of the initial estimates of the

Table 3

Classification accuracies obtained by using the proposed tech-

nique with two different initialization strategies for the joint

probabilities of classes: (a) equal probabilities; (b) prior knowl-

edge of the vineyard class

Land-cover class Classification accuracy (%)

Equal

probabilities

Using prior

knowledge

Pasture 83.53 88.28

Forest 97.44 97.44

Urban area 95.70 92.58

Water body 100.00 100.00

Vineyard 62.38 66.67

Overall 91.48 92.51
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class-conditional densities at time t2. (According to
our approach, such estimates were assumed to be
equal to the corresponding values obtained for the
t1 image.) To this end, a classical ML classifier
was trained on the t1 image (i.e., the September
1995 image). After training, the effectiveness of the
classifier was evaluated on the test set of the t2
image (i.e., the July 1996 image). The classification

accuracies obtained (see Table 7) were very low. In
particular, the overall classification accuracy for
the July test set was equal to 50.43%, which cannot
be considered an acceptable result. The meaning of
this result is twofold. On the one hand, it high-
lights the implicit difficulty of the multitemporal
data set considered, as the estimates on the Sep-
tember training set proved unsuitable to providing

Table 7

Classification accuracies obtained for the July 1996 test set by

using a classical supervised ML classifier trained on the Sep-

tember 1995 training set

Land-cover class Classification accuracy (%)

Pasture 19.52

Forest 95.62

Urban area 90.43

Water body 36.11

Vineyard 24.78

Overall 50.43

Table 4

Confusion matrices that resulted from the classification of the July 1996 test set by using the proposed technique with two different

intialization strategies for the joint probabilities of classes

Pasture Forest Urban area Water body Vineyard

(a) Equal probabilities

Pasture 492 12 85 0 0

Forest 2 267 2 0 3

Urban area 5 5 400 0 8

Water body 0 0 0 551 0

Vineyard 23 11 10 0 73

(b) Prior knowledge of the vineyard class

Pasture 520 13 56 0 0

Forest 2 267 2 0 3

Urban area 7 7 387 0 17

Water body 0 0 0 551 0

Vineyard 22 9 8 0 78

Table 6

Confusion matrix that resulted from the classification of the July 1996 test set by using a classical supervised ML classifier trained on

the July 1996 training set

Pasture Forest Urban area Water body Vineyard

Pasture 542 26 19 0 2

Forest 16 254 1 0 3

Urban area 11 2 390 0 15

Water body 0 0 0 551 0

Vineyard 36 3 9 0 69

Table 5

Classification accuracies obtained on the July 1996 test set by

using a classical supervised ML classifier trained with the July

1996 training set

Land-cover class Classification accuracy (%)

Pasture 92.02

Forest 92.70

Urban area 93.30

Water body 100.00

Vineyard 58.97

Overall 92.66
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acceptable classification accuracies for the July test
set. On the other hand, it confirms the capability of
the proposed approach to iteratively improve the
accuracies of the estimates of the class-conditional
densities at time t2.

5. Discussion and conclusions

In this paper, a partially unsupervised ap-
proach to the classification of multitemporal re-
mote-sensing images has been presented. Such an
approach allows the classification of a remote-
sensing image acquired in a specific geographical
area at a given time, in the cases where training
data are not available. The classification is per-
formed using the statistical parameters estimated
for an image acquired in the same area before the
one under analysis.

The proposed method is based on a cascade-
classifier approach and on a specific formulation
of the EM algorithm. The iterative EM algorithm
allows the unsupervised estimation of both the
prior joint probabilities of classes and the density
functions of classes at time t2 on the basis of
the available information: i.e., the known density
functions of classes at time t1 (derived from the
available training set) and the joint density func-
tion pðX1;X2Þ of the two images considered. In
addition, the proposed technique allows the ex-
ploitation of the prior information (if available)
about the possible land-cover transitions that oc-
curred in the area of interest between the two
considered times; this may increase the robustness
of the classification procedure.

It is worth noting that, in some cases, the values
of the parameters that characterize the density
functions of classes at time t1 may not provide
accurate approximations for the same terms at
time t2. This may depend on differences in atmo-
spheric and light conditions that alter the spectral
signatures of land-cover classes in different images
and consequently the distributions of the classes in
the feature space. Such differences may lead to the
use of initialization values of the parameters of the
density functions of classes at t2 significantly dif-
ferent from the true values. Therefore, in these

cases, before applying the proposed approach, we
recommend performing a simple pre-processing
phase aimed at reducing, if possible, the effects of
the aforesaid differences. This may provide better
starting points for the estimation procedure.

Experiments carried out on a multitemporal
data set confirmed the validity of the proposed
technique. In particular, they pointed out its
capability to accurately estimate the class-condi-
tional densities at time t2 as well as the prior joint
probabilities of classes. Consequently, the adopted
classifier proved very effective and attained high
classification accuracies for the second image,
without relying on the corresponding training set.
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