
1360 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 39, NO. 7, JULY 2001

A New Search Algorithm for Feature Selection in
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Abstract—A new suboptimal search strategy suitable for fea-
ture selection in very high-dimensional remote sensing images (e.g.,
those acquired by hyperspectral sensors) is proposed. Each solu-
tion of the feature selection problem is represented as a binary
string that indicates which features are selected and which are dis-
regarded. In turn, each binary string corresponds to a point of a
multidimensional binary space. Given a criterion function to eval-
uate the effectiveness of a selected solution, the proposed strategy is
based on the search for constrained local extremes of such a func-
tion in the above-defined binary space. In particular, two different
algorithms are presented that explore the space of solutions in dif-
ferent ways. These algorithms are compared with the classicalse-
quential forward selectionand sequential forward floating selection
suboptimal techniques, using hyperspectral remote sensing images
(acquired by the airborne visible/infrared imaging spectrometer
[AVIRIS] sensor) as a data set. Experimental results point out the
effectiveness of both algorithms, which can be regarded as valid al-
ternatives to classical methods, as they allow interesting tradeoffs
between the qualities of selected feature subsets and computational
cost.

Index Terms—Feature selection, hyperspectral data , remote
sensing, search algorithms.

I. INTRODUCTION

T HE recent development of hyperspectral sensors has
opened new vistas for the monitoring of the earth’s

surface by using remote sensing images. In particular, hyper-
spectral sensors provide a dense sampling of spectral signatures
of land covers, thus allowing a better discrimination among
similar ground cover classes than traditional multispectral
scanners [1]. However, at present, a major limitation on the use
of hyperspectral images lies in the lack of reliable and effective
techniques for processing the large amount of data involved.
In this context, an important issue concerns the selection of
the most informative spectral channels to be used for the clas-
sification of hyperspectral images. As hyperspectral sensors
acquire images in very close spectral bands, the resulting
high-dimensional feature sets contain redundant information.
Consequently, the number of features given as input to a classi-
fier can be reduced without a considerable loss of information
[2]. Such reduction obviously leads to a sharp decrease in
the processing time required by the classification process. In
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addition, it may also provide an improvement in classification
accuracy. In particular, when a supervised classifier is applied
to problems in high-dimensional feature spaces, the Hughes
effect [3] can be observed, that is, a decrease in classification
accuracy when the number of features exceeds a given limit,
for a fixed training-sample size. A reduction in the number of
features overcomes this problem, thus improving classification
accuracy.

Feature selection techniques generally involve both a search
algorithm and a criterion function [2], [4], [5]. The search algo-
rithm generates and compares possible “solutions” of the fea-
ture selection problem (i.e., subsets of features) by applying the
criterion function as a measure of the effectiveness of each con-
sidered feature subset. The best feature subset found in this way
is the output of the feature selection algorithm. In this paper, at-
tention is focused on search algorithms; we refer the reader to
other papers [2], [4], [6], [7] for more details on criterion func-
tions.

In the literature, several optimal and suboptimal search al-
gorithms have been proposed [8]–[16]. Optimal search algo-
rithms identify the subset that contains a prefixed number of
features and is the best in terms of the adopted criterion func-
tion, whereas suboptimal search algorithms select a good subset
that contains a prefixed number of features but that is not neces-
sarily the best one. Due to their combinatorial complexity, op-
timal search algorithms cannot be used when the number of fea-
tures is larger than a few tens. In these cases (which obviously
include hyperspectral data), suboptimal algorithms are manda-
tory.

In this paper, a new suboptimal search strategy suitable
for hyperdimensional feature selection problems is proposed.
This strategy is based on the search for constrained local
extremes in a discrete binary space. In particular, two different
algorithms are presented that allow different tradeoffs between
the effectiveness of selected features and the computational
time required to find a solution. Such algorithms have been
compared with other suboptimal algorithms (described in the
literature) by using hyperspectral remotely sensed images
acquired by the airborne visible/infrared imaging spectrometer
(AVIRIS). Results point out that the proposed algorithms
represent valid alternatives to classical algorithms as they allow
different tradeoffs between the qualities of selected feature
subsets and computational cost.

The paper is organized into five sections. Section II presents
a literature survey on search algorithms for feature selection.
Sections III and IV describe the proposed search strategy and
the two related algorithms. In Section V, the AVIRIS data used
for experiments are described and results are reported. Finally,
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in Section VI, a discussion of the obtained results is provided
and conclusions are drawn.

II. PREVIOUS WORK

The problem of developing effective search strategies for fea-
ture selection algorithms has been extensively investigated in
pattern recognition literature [2], [5], [9], and several optimal
and suboptimal strategies have been proposed.

When dealing with data acquired by hyperspectral sensors,
optimal strategies cannot be used due to the huge computa-
tion time they require. As is well known from the literature [2],
[5], an exhaustive search for the optimal solution is prohibitive
from a computational viewpoint, even for moderate values of
the number of features. Not even the faster and widely used
branch and boundmethod proposed by Narendra and Fukunaga
[2], [8] makes it feasible to search for the optimal solution when
high-dimensional data are considered. Hence, in the case of fea-
ture selection for hyperspectral data classification, only a sub-
optimal solution can be attained.

In the literature, several suboptimal approaches for feature
selection have been proposed. The simplest suboptimal search
strategies are the sequential forward selection (SFS) and se-
quential backward selection (SBS) techniques [5], [9]. These
techniques identify the best feature subset that can be obtained
by adding to, or removing from, the current feature subset one
feature at a time. In particular, the SFS algorithm carries out a
“bottom-up” search strategy that, starting from an empty fea-
ture subset and adding one feature at a time, achieves a feature
subset with the desired cardinality. On the contrary, the SBS al-
gorithm exploits a “top-down” search strategy that starts from a
complete set of features and removes one feature at a time until
a feature subset with the desired cardinality is obtained. Unfor-
tunately, both algorithms exhibit a serious drawback. In the case
of the SFS algorithm, once the features have been selected, they
cannot be discarded. Analogously, in the case of the SBS search
technique, once the features have been discarded, they cannot
be reselected.

The plus--minus- method [10] employs a more complex se-
quential search approach to overcome this drawback. The main
limitation of this technique is that there is no theoretical crite-
rion for selecting the values ofand to obtain the best feature
set.

A computationally appealing method is the max-min algo-
rithm [11]. It applies a sequential forward selection strategy
based on the computation of individual and pairwise merits of
features. Unfortunately, the performances of such a method are
not satisfactory, as confirmed by the comparative study reported
in [5]. In addition, Pudilet al. [12] showed that the theoretical
premise providing the basis for the max-min approach is not
necessarily valid.

The two most promising sequential search methods are those
proposed by Pudilet al. [13], namely, the sequential forward
floating selection (SFFS) method and the sequential backward
floating selection (SBFS) method. They improve the standard
SFS and SBS techniques by dynamically changing the number
of features included (SFFS) or removed (SBFS) at each step

and by allowing the reconsideration of the features included or
removed at the previous steps.

The representation of the space of feature subsets as a graph
(“feature selection lattice”) allows the application of standard
graph-searching algorithms to solve the feature selection
problem [14]. Even though this way of facing the problem
seems to be interesting, it is not widespread in the literature.

The application of genetic algorithms was proposed in
[15]. In these algorithms, a solution (i.e., a feature subset)
corresponds to a “chromosome” and is represented by a binary
string whose length is equal to the number of starting features.
In the binary string, a zero corresponds to a discarded feature
and a one corresponds to a selected feature. Satisfactory perfor-
mances were demonstrated on both a synthetic 24-dimensional
(24-D) data set and a real 30-dimensional (30-D) data set.
However, the comparative study in [16] showed that the perfor-
mances of genetic algorithms, though good for medium-sized
problems, degrade as the problem dimensionality increases.

Finally, we recall that also the possibility of applying sim-
ulated annealing to the feature selection problem has been ex-
plored [17].

According to the comparisons made in the literature, the se-
quential floating search methods (SFFS and SBFS) can be re-
garded as being the most effective ones, when one deals with
very high-dimensional feature spaces [5]. In particular, these
methods are able to provide optimal or quasioptimal solutions,
while requiring much less computation time than most of the
other strategies considered [5], [13]. The investigation reported
in [16] for data sets with up to 360 features shows that these
methods are very suitable even for very high-dimensional prob-
lems.

III. STEEPEST-ASCENTSEARCH STRATEGY

Let us consider a classification problem in which a setof
features is available to characterize each pattern

(1)

The objective of feature selection is to reduce the number of
features utilized to characterize patterns by selecting, through
the optimization of a criterion function (e.g., maximization of
a separability index or minimization of an error bound), a good
subset of features, with

(2)

The criterion function is computed by using a preclassified ref-
erence set of patterns (i.e., a training set). The value ofde-
pends on the features included in the subset(i.e., ).

The entire set of all feature subsets can be represented by con-
sidering a discrete binary space. Each point in this space is
a vector with binary components. The value 0 in the-th po-
sition indicates that the-th feature is not included in the cor-
responding feature subset; the value 1 in the-th position indi-
cates that the-th feature is included in the corresponding fea-
ture subset. For example, in a simple case with features,
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the binary vector indicates the feature subset that
includes only the second and fourth features

(3)

The criterion function can be regarded as a scalar function
defined in the aforesaid discrete binary space. Let us consider,
without loss of generality, the case in which the criterion func-
tion has to be maximized. In this case, the optimal search for the
best solution to the problem of selectingout of features cor-
responds to the problem of finding the global constrained max-
imum of the criterion function, where the constraint is defined as
the requirement that the number of selected features be exactly

(in other words, the solution must correspond to a vector
with components equal to 1 and components equal
to 0).

With reference to the above description of the feature selec-
tion problem, we propose to search for suboptimal solutions
that are constrained local maxima of the criterion function. Ac-
cording to our method, we start from a pointcorresponding
to an initial subset of features, then we move to other points
that correspond to subsets of features which allow the
value of the criterion function to be progressively increased.
This strategy differs from most search algorithms for feature
selection, which usually progressively increase (e.g., SFS) or
decrease (e.g., SBS) the number of features in, with possible
backtracking (e.g., SFFS and SFBS).

We now need to give a precise definition of local maxima in
the previously described discrete space. To this end, let us
consider the neighborhood of a vectorthat includes all vectors
that differ from in no more than two components. We say that
a vector is a local maximum of the criterion function in
such a neighborhood if the value of the criterion function in
is greater than or equal to the value the criterion function takes
on any other point of the neighborhood of. We note that the
neighborhood of any vectoris made up of vectors that differ
only in one component, and of vectors that differ in
two components. However, ifsatisfies the constraint, only

vectors included in the neighborhood ofstill satisfy the
constraint. Constrained local maxima are defined with respect to
this subset of the neighborhood.

The Steepest Ascent Algorithm

Symbol definitions
value of the feature selection criterion function com-
puted for the feature subset;
feature subset utilized for the initialization;
best feature subset selected at the-th iteration

;
discrete binary space representing the entire set of
all feature subsets;
vector of binary components that representsin
the space ;
set of features discarded by the search algorithm at
the -th iteration;
set of vectors corresponding to the portion of the
neighborhood of that satisfies the constraint on
the number of features to be selected;

maximum value of found by the search algorithm
by exploring .

Initialization
An initial feature subset , composed of features se-
lected from the set of available features, is considered.
The corresponding starting vectorin can be easily ob-
tained starting from . The discarded features are
included in the complementary set :

(4)

The value of the criterion function is computed
for the initial subset .

-th Iteration
At the -th iteration of the algorithm, all possible ex-
changes of one feature belonging to for another
feature belonging to are considered and the corre-
sponding values of are computed. This is equivalent to
evaluating in the set of vectors corresponding to
the portion of the neighborhood of that satisfies the
constraint. The maximum value obtained in this way is
considered:

(5)

If the following relation holds:

(6)

then the feature exchange that results in is accepted
and the subsets of featuresand are updated accord-
ingly.

Stop Criterion
When the condition

(7)

holds, it means that a local maximum has been reached;
then the algorithm is stopped. Finally, is set to .

The name “steepest ascent” (SA) search algorithm derives
from the fact that, at each iteration, a step in the direction of
the steepest ascent of, in the set , is taken. The algorithm
is iterated as long as it is possible to increase the value of the
criterion function. Convergence to a local maximum in a finite
number of iterations is guaranteed. At convergence,contains
the solution, that is, the selected subset offeatures. The algo-
rithm can be run several times with random initializations (i.e.,
starting from different randomly generated feature subsets)
in order to better explore the space of solutions (a different local
maximum may be obtained at each run). An alternative strategy
lies in considering only one “good” starting point generated
by another search algorithm (e.g., the basicSFStechnique); in
this case, only one run of the algorithm is carried out.

IV. FAST ALGORITHM FOR A CONSTRAINEDSEARCH

We have also investigated other algorithms aimed at a con-
strained search for local maxima, in order to reduce the compu-
tational load required by the proposed technique. For the sake
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of brevity, we shall consider here only one of such search algo-
rithms. To get an idea of the computational load of SA, we note
that, at each iteration, the previously defined set of vectors
is explored to check if a local maximum has been reached and,
possibly, to update the current feature subset. As stated before,
such a set includes points; the value of is com-
puted for each of them. Globally, the number of times required
to evaluate is

(8)

where is the number of iterations required. The fastest search
algorithm among those we have experimented is the following
fast constrained search (FCS) algorithm. This algorithm is based
on a loop whose number of iterations is deterministic. For sim-
plicity, we present it in the form of a pseudocode.

The Fast Constrained Search Algorithm
STARTfrom an initial feature subset composed of features
selected from

Set the current feature subset to
Compute the complementary subset of
FOReach element
FOReach element
Generate by exchanging for in
Compute the value of the criterion function

CONTINUE
Set to the maximum of ) obtained by exchanging

for any possible
IF , THENupdate by the exchange
that provided

Compute the complementary subset of
ELSEleave unchanged

CONTINUE

FCS requires the computation offor times.
Therefore, it involves a computational load equivalent to that
of one iteration of the SA algorithm. By contrast, the result is
not equivalent, as, in this case, the number of moves incan
range from 1 to (each of the features in can be exchanged
only once or left in ), whereas SA performs just one move
per iteration. However, it is not true any more that each move
in the space is performed in the direction of the steepest as-
cent. We expect this algorithm to be less effective in terms of the
goodness of the solution found, but it is always faster than or as
fast as the SA algorithm. In addition, as the number of iterations
required by FCS is a priori known, the computational load is de-
terministic. Obviously, for this algorithm the same initialization
strategies as for SA can be adopted.

V. EXPERIMENTAL RESULTS

A. Data Set Description

Experiments using various data sets were carried out to vali-
date our search algorithms. In the following, we shall focus on
the experiments performed with the most interesting data set,
that is, a hyperspectral data set. In particular, we investigated

Fig. 1. Band 12 (wavelength range between about 0.51 and 0.52[�m]) of the
hyperspectral image utilized in the experiments.

TABLE I
LAND COVER CLASSES AND RELATED NUMBERS OF PIXELS

CONSIDERED IN THEEXPERIMENTS

the effectivenesses of SA and FCS in the related high-dimen-
sional space and we made comparisons with other suboptimal
techniques (i.e., SFS and SFFS).

The considered data set referred to the agricultural area of
Indian Pine in the northern part of Indiana [18]. Images were
acquired by an AVIRIS in June 1992. The data set was com-
posed of 220 spectral channels (spaced at about 10 nm) acquired
in the 0.4–2.5 m region. A scene 145 145 pixels in size
was selected for our experiments (Fig. 1 shows channel 12 of
the sensor). The available ground truth covered almost all the
scene. For our experiments, we considered the nine numerically
most representative land-cover classes (see Table I). The crop
canopies were about a 5% cover, the rest being soil covered with
the residues of the previous year’s crops. No till, a minimum
till, and a clean till were the three different levels of tillage, in-
dicating a large, moderate, and small amount of residue, respec-
tively [18].

Overall, 9345 pixels were selected to form a training set. Each
pixel was characterized by the 220 features related to the chan-
nels of the sensor. All the features were normalized to the range
from 0 to 1.
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Fig. 2. Computed values of the criterion function for the feature subsets selected by the different search algorithms versus number of selected features. The values
of the criterion function obtained by the proposed SA and FCS algorithms and by SFFS have been divided by the corresponding values provided by SFS.

B. Results

Experiments were carried out to assess the performances of
the proposed algorithms and to compare them with those of the
SFS and SFFS algorithms in terms of both the solution quality
and the computational load. SFS was selected for the compar-
ison because it is well-known and widely used (thanks to its
simplicity). SFFS was considered as it is very effective for the
selection of features from large feature sets and allows a good
tradeoff between execution time and solution quality [5], [13].

As a criterion function, we adopted the average Jeffries-Ma-
tusita (JM) distance [4], [6], [7], as it is one of the best known
distance measures utilized by the remote sensing community for
feature selection in multiclass problems

(9)

(10)

(11)

where
number of classes ( , for our data set);
a priori probability of the th class;
Bhattacharyya distance between theth and th
classes;

and mean vector and the covariance matrix of theth
class, respectively.

The assumption of Gaussian class distributions was made in
order to simplify the computation of the Bhattacharyya distance
according to (11). As is a distance measure, the larger the
obtained distance, the better the solution (in terms of class sep-
arability).

To better point out the differences in the performances of the
above algorithms, we used the results of SFS as reference ones,

that is, we plotted the values of the criterion function computed
on the subsets provided by SA, FCS, and SFFS, after dividing
them by the corresponding values obtained by SFS (Fig. 2). For
example, a value equal to 1 on the curve indicated as SFFS/SFS
means that SFFS and SFS provided identical values of the JM
distance. For the initializations of SA and FCS, we adopted the
strategy of performing only one run, starting from the feature
subset provided by SFS.

As can be observed from Fig. 2, the use of SFFS and
of the proposed SA and FCS algorithms resulted in some
improvements over SFS for numbers of selected features below
20, whereas for larger numbers of features, differences are
negligible. The improvement obtained for six selected features
is the most significant. Comparing the results of SA and FCS
with those of SFFS on the considered data set, one can notice
that the first two algorithms allowed greater improvements than
the third (about two times greater, in many cases). Finally, a
comparison between the two proposed algorithms shows that
SA usually (but not always) provided better or equal results
than/to those yielded by the FCS algorithm; however, differ-
ences are negligible (the related curves are almost completely
overlapped in Fig. 2).

In order to check if numbers of selected features smaller than
20 are sufficient to distinguish the different classes of the con-
sidered data set, we selected, as interesting examples, the num-
bers six, nine, and 17 (see Fig. 2). In order to assess the classi-
fication accuracy, the set of labeled samples was randomly sub-
divided into a training set and a test set, each containing ap-
proximately half the available samples. Under the hypothesis
of Gaussian class distributions, the training set was used to es-
timate the mean vectors, the covariance matrices and the prior
class probabilities; the Bayes rule for the minimum error [2]
was applied to classify the test set. Overall classification accu-
racies equal to 78.6%, 81.4%, and 85.3% were obtained for the
feature subsets provided by the SA algorithm and numbers of
selected features equal to six, nine, and 17, respectively. The
error matrix and the accuracy for each class in the case of 17
features are given in Table II. The inspection of the confusion
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Fig. 3. Execution times required by the considered search algorithms versus number of selected features.

TABLE II
ERRORMATRIX AND CLASS ACCURACIES FOR THETESTSET CLASSIFICATION

BASED ON THE17 FEATURESSELECTED BY THESA ALGORITHM. CLASSES ARE

LISTED IN THE SAME ORDER AS IN TABLE I

matrix confirms that the most critical classes to separate are
corn-no till, corn-min till, soybean-no till, soybean-min till and
soybean-clean till; this situation was expected, as the spectral
behaviors of such classes are quite similar. The above classi-
fication accuracies may be considered satisfactory or not, de-
pending on the application requirements.

The other important characteristics to be compared are the
computational loads of the selection algorithms, as not only the
optimal search techniques, but also some sophisticated subop-
timal algorithms (e.g., generalized sequential methods [5]) ex-
hibit good performances, though at the cost of long execution
times.

For all the methods used in our experiments, the most time
consuming operations were the calculations of the inverse ma-
trices and of the matrix determinants (the latter being required
for the computation of the JM distance). Therefore, to reduce the
number of operations to be performed, we adopted the method
devised by Cholesky [19], [20]. In Fig. 3, we give the execution
times for SFS, SFFS, SA, and FCS. All the experiments were
performed on a SUN SPARC station 20.

For every number of selected features (from two to 50), SFS
is the fastest, and the proposed SA algorithm is the slowest.
In the most interesting range of features (two to 20), SFFS is
faster even than the proposed FCS algorithm. It is slower for

more than 25 selected features. In general, we can say that all
the computations presented in Fig. 3 are reasonable, as also the
longest one (i.e., the selection of 50 out of 220 features by SA)
took less than one hour. In the range two to 20 features, the SA
algorithm took, on average, five times more than SFFS; the FCS
algorithm took, on average, about 1.5 times more than SFFS.
In particular, the selection of 20 features by the SA algorithm
required about 3 min, i.e., 5.8 times more than SFFS; for the
same task, FCS took about 1.6 times more than SFFS.

Finally, an experiment was carried out to assess, at least for
the considered hyperspectral data set, how sensitive the SA al-
gorithm is to the initial point, that is, if starting from random
points involves a high risk of converging to local maxima asso-
ciated with low-performance feature subsets. At the same time,
this experiment allowed us to evaluate if adopting the solution
provided by SFS as the starting point can be regarded as an ef-
fective initialization strategy. To this end, the number of fea-
tures to be selected ranged from one to 20 out of the 220 avail-
able features. In each case, 100 different starting points were
randomly generated to initialize the SA algorithm. The value
of JM was computed for each of the 100 solutions; the min-
imum and the maximum of such JM values were determined,
as well as the number of times the maximum occurred. For a
comparative analysis, the minimum and maximum JM values
are given in Fig. 4 in the same way as in Fig. 2, i.e., by using as
reference values the corresponding JM values of the solutions
provided by the SFS algorithm. In the same diagram, we show
again the performances of the SFFS algorithm. As one can ob-
serve, with the 100 random initializations, even the worst per-
formance (Min/SFS curve) can be considered good for all the
numbers of selected features except 13 and 14. For these two
numbers, considering only one random starting point would be
risky. To overcome this problem, one should run the SA algo-
rithm a few times, starting from different random points. For
example, with five or more random initializations, one would
be very likely to obtain at least one good solution, even for 13
features to be selected. In fact, in our experiment, for 13 features
to be selected, we obtained the maximum in 45 cases out of 100.
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Fig. 4. Performances of the SA algorithm with multiple random starts. The plot shows the minimum and maximum values of the criterion function obtainedwith
100 random starts versus number of selected features. For a comparison, the performances of SFS are used as reference values. The performances of SFFSare also
given.

If one compares the diagram Min/SFS (Fig. 4) with the
SA/SFS one (Fig. 2), one can deduce that the strategy that
considers only the solution provided by the SFS algorithm
represents a good tradeoff between limiting the computation
time (by using only one starting point) and obtaining solutions
of good quality. In particular, in only one case (four features to
be selected), the solution obtained by this strategy was signifi-
cantly worse than that reached by the strategy based on multiple
random initializations. In addition, thanks to the way the SA
algorithm operates, one can be sure that the final solution will
be better than or equal to the starting point. Therefore, starting
from the solution provided by SFS is certainly more reliable
than starting from a single random point.

VI. DISCUSSION ANDCONCLUSIONS

A new search strategy for feature selection from hyperspec-
tral remote sensing images has been proposed that is based on
the representation of the problem solution by a discrete binary
space and on the search for constrained local extremes of a cri-
terion function in such a space. According to this strategy, an
algorithm applying the concept of SA has been defined. In ad-
dition, an FCS algorithm has also been proposed that resembles
the SA algorithm but that makes only a prefixed number of at-
tempts to improve the solution, no matter if a local extreme has
been reached or not. The proposed SA and FCS algorithms have
been evaluated and compared with the SFS and SFFS ones on
a hyperspectral data set acquired by the AVIRIS sensor (220
spectral bands). Experimental results have shown that, consid-
ering the most significant range of selected features (from one to
20), the proposed methods provide better solutions (i.e., better
feature subsets) than SFS and SFFS, though at the cost of an
increase in execution times. However, in spite of this increase,

the execution times of both proposed algorithms remain quite
short, as compared with the overall time that may be required
by the classification of a remote sensing image. For a compar-
ison between the two proposed algorithms, we note that the FCS
algorithm allows a better tradeoff between solution quality and
execution time than the SA algorithm, as it is much faster and re-
quires a deterministic execution time, whereas the solution qual-
ities are almost identical. In comparison to SFFS, the FCS algo-
rithm provides better solutions at the cost of an execution time
that, on average, is about 1.5 times longer. For a larger number
of selected features (more than 20), all the considered selection
procedures provide solutions of similar qualities.

We have proposed two strategies for the initialization of the
SA and FCS algorithms, that is, initialization with the results of
SFS and initialization with multiple random feature subsets. Our
experiments performed by the SA algorithm pointed out that
the former strategy provides a better tradeoff between solution
quality and computation time. However, the strategy based on
multiple trials, which obviously takes a longer execution time,
may yield better results. For the considered hyperspectral data
set, when there was a significant difference of quality between
the best and the worst solutions with 100 trials, the best solution
was always obtained in a good share of the cases (at least 45 out
of 100). Consequently, for this data set, the number of random
initializations required would not be large (e.g., five different
starting points would be enough).

According to the results obtained by the experiments, in
our opinion, the proposed search strategy and the related
algorithms represent a good alternative to the standard SFFS
and SFS methods for feature selection from hyperspectral data.
In particular, different algorithms and different initialization
strategies allow one to obtain different tradeoffs between the
effectiveness of the selected feature subset and the required
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computation time. The choice should be driven by the con-
straints of the specific problem considered.
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