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Unsupervised Retraining of a Maximum Likelihood
Classifier for the Analysis of Multitemporal Remote

Sensing Images
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Abstract—An unsupervised retraining technique for a maximum likeli-
hood (ML) classifier is presented. The proposed technique allows the clas-
sifier’s parameters, obtained by supervised learning on a specific image, to
be updated in a totally unsupervised way on the basis of the distribution
of a new image to be classified. This enables the classifier to provide a high
accuracy for the new image even when the corresponding training set is not
available.

Index Terms—Expectation maximization algorithm, land-cover map up-
dating, maximum likelihood (ML) classification, remote sensing, unsuper-
vised retraining.

I. INTRODUCTION

In the past few years, supervised classification techniques have
proven effective tools for automatic generation of land cover maps
of extended geographical areas [1]–[5]. The capabilities of such
techniques and the frequent availability of remote sensing images,
acquired periodically in many regions of the world by spaceborne
sensors, make it possible to develop monitoring systems aimed at
mapping the land cover classes that characterize specific geographical
areas on a regular basis. From an operational point of view, the imple-
mentation of a system of this type requires the availability of a suitable
training set (and hence of ground truth information) for each new
image to be categorized. However, the collection of a reliable ground
truth is usually an expensive task in terms of time and economic cost.
Consequently, in many cases, it is not possible to rely on training
data as frequently as required to ensure an efficient monitoring of the
site considered. This is a serious drawback that limits the operational
capabilities of the aforementioned monitoring systems.

We face this problem by focusing on an important group of real
world applications in which the considered test sites can be assumed
to be characterized by fixed sets of land cover classes: only the spa-
tial distributions of such land covers are supposed to vary over time.
Examples of such applications include studies on forestry, territorial
management, and natural resource monitoring on a national or even
continental scale [6]–[8].

In this communication, we present an unsupervised retraining tech-
nique for maximum likelihood (ML) classifiers [9] that overcomes the
aforementioned drawback of land cover monitoring systems. In par-
ticular, the proposed technique allows the existing statistical parame-
ters of an ML classifier (estimated by supervised learning on a specific
image) to be updated whenever a new image lacking the corresponding
training set has to be analyzed. The unsupervised retraining phase per-
mits the classifier to generate an accurate land cover map from the new
image even when the related training set is not available.

II. GENERAL FORMULATION OF THE PROBLEM

Let us consider an ML classifier for the periodical monitoring of a
specific geographical area. LetX1 = fx1; 1; x1; 2; � � � ; x1;Mg de-
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note a multispectral image consisting ofM pixels acquired in the area
under analysis at the time,t1; x1; j being the feature vector associated
with the jth pixel of the image. Let
 = f!1; !2; � � � ; !Cg be the
set ofC land cover classes that characterize the geographical area con-
sidered att1. LetX1 be a multivariate random variable that represents
the pixel values (i.e., the feature vector values) inX1. Finally, let us
assume that a reliable ground truth (from which a training setY1 can
be derived) is available att1.

In the context of the Bayes decision theory, the decision rule adopted
by an ML classifier is expressed as follows [1], [9]:

x1; j 2 !k; if !k = argmax
! 2


P̂1(!i)p̂1(x1; j=!i) (1)

whereP̂1(!i) and p̂1(X1=!i) are the estimates of thea priori prob-
ability and of the conditional density function of the class!i in the
imageX1, respectively. It is worth noting that the subscript1 is used
here to stress the dependencies of both statistical terms on the consid-
ered imageX1. According to (1), the training phase of an ML classifier
consists in the estimations of thea priori probabilityP1(!i) and the
conditional densityp1(X1=!i) for each class!i 2 
. Such estimates
can be obtained by using classical supervised approaches that exploit
the information that is present in the considered training setY1 [1],
[9].

Let us now assume that, at the timet2, a new land cover map of
the study area is required. LetX2 = fx2; 1; x2; 2; � � � ; x2; Ng (N
may be different fromM ) be a new image acquired att2 in the study
area, which is assumed to be characterized by the same set of land
cover classes
 = f!1; !2; � � � ; !Cg. This means that only the spatial
distributions of such classes may change betweent1 and t2, but no
new land covers can be noticed att2. Let us also assume that att2, the
corresponding training set is not available. This prevents the generation
of the required land cover map as the training of the classifier cannot be
performed [i.e., both thea priori probabilityP2(!i) and the conditional
density functionp2(X2=!i) of each class!i 2 
 in the new image
X2 cannot be estimated by traditional supervised approaches]. At the
same time, it is not possible to apply the classifier trained on the image
X1 to the imageX2 because, in general, the estimates of statistical
class parameters att1 do not provide accurate approximations for the
same terms att2. This is due to several factors (e.g., differences in
the atmospheric and light conditions at the image acquisition dates,
sensor nonlinearities, different levels of soil moisture, etc.) that alter
the spectral signatures of land cover classes in different images and
consequently, the distributions of such classes in the feature space.

In this context, we propose an unsupervised retraining technique to
derive, for each class!i 2 
, reliable estimates of bothP2(!i) and
p2(X2=!i), starting from the current classifier parameters obtained in
a supervised way at the timet1.

III. T HE PROPOSEDUNSUPERVISEDRETRAINING TECHNIQUE

The main idea of the proposed technique is that the first approximate
estimates of the parameter values that characterize the classes consid-
ered at the timet2 can be obtained by exploiting the classifier’s pa-
rameters estimated at the timet1 by supervised learning. In particular,
for each class!i 2 
, the initial values of both the prior probability
P 0

2 (!i) and the conditional density functionp02(X2=!i) can be ap-
proximated by

P 0

2 (!i) = P̂1(!i); p02(X2=!i) = p̂1(X1=!i): (2)

As already pointed out in the previous section, generally, such first
estimates do not provide accurate approximations for the statistical pa-
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rameters of the classes att2. Therefore, we suggest improving such
rough estimates by exploiting the information associated with the dis-
tribution p2(X2) of the new imageX2. In particular, the proposed
method is based on the observation that the statistical distribution of
the pixel values inX2 can be described by a mixed density distribution
with as many components as the classes to be recognized

p2(X2) =

C

i=1

P2(!i)p2(X2=!i) (3)

where the mixing parameters and the component densities are thea
priori probabilities and the conditional density functions of the classes,
respectively [10]. In this context, the retraining of the ML classifier
at the timet2 becomes a mixture density estimation problem. In our
case, this problem involves the estimation of the parameter vector�2 =
[�2; 1; P2(!1); �2; 2; P2(!2); � � � ; �2; C ; P2(!C)], where each com-
ponent�2; i represents the vector of parameters that characterizes the
density functionp2(X2=!i), which, given its dependence on�2; i, can
be rewritten asp2(X2=!i; �2; i). The components of�2 can be esti-
mated by maximizing a log-likelihood functioǹ(X2=���2) defined as

`(X2=���2) =

N

j=1

log

C

i=1

P2(!i=���2)p2(x2; j=!i; ���2) : (4)

The expectation maximization (EM) algorithm [11]–[13] is one of
the most powerful solutions to this type of problem. It consists of two
main steps: an expectation step and a maximization step. Both steps
are iterated so that, at each iteration, the estimated parameters provide
an increase in the log-likelihood function`(X2=���2) until a local max-
imum is reached.

To further explain the proposed approach, let us consider, for sim-
plicity, the case in which all classes included in
 can be described by
Gaussian distributions. In this context, the density function associated
with each class!i att2 can be completely described by the mean vector
�2; i and the covariance matrix�2; i. Therefore, the vector of parame-
ters to be estimated becomes

�2 = [�2; 1; �2; 1; P2(!1); � � � ; �2; C ; �2; C ; P2(!C)] : (5)

It can be proven that the equations for estimating the statistical terms
associated with a generic class!i are the following [11]–[13]:

P s+1
2 (!i) =

x 2X

P s
2 (!i)p

s
2(x2; j=!i)

ps(x2; j)

N
(6)

[�2; i]
s+1 =

x 2X

P s
2 (!i)p

s
2(x2; j=!i)

ps2(x2; j)
x2; j

x 2X

P s
2 (!i)p

s
2(x2; j=!i)

ps2(x2; j)

(7)

[�2; i]
s+1 =

x 2X

P s
2 (!i)p

s
2(x2; j=!i)

ps2(x2; j)
x2; j � [�2; �]

s+1 2

x 2X

P s
2 (!i)p

s
2(x2; j=!i)

ps2(x2; j)

(8)

where the superscriptss ands+ 1 refer to the values of the parameters
at the current and next iterations, respectively. The estimates are ob-
tained starting from the initial values of the considered parameters and
iterating the above equations up to convergence.

An important aspect of the EM algorithm concerns its convergence
properties. Even though convergence can be ensured, it is impossible
to guarantee that the algorithm will converge to the global maximum of
the log-likelihood function (only in few specific cases is it possible to
ensure the convergence to the global maximum). A detailed description
of the EM algorithm and its theoretical aspects is beyond the scope
of this paper. We refer the reader to the literature for a more detailed
analysis of such an algorithm and its properties [11], [13].

The estimates obtained for each class!i 2 
 at convergence (i.e.,
P conv
2 (!i); �conv2; i and�conv

2; i ) are the new parameters of the ML
classifier at the timet2, i.e., P̂2(!i) = P conv

2 (!i); �̂2; i = �conv2; i ;
�̂2; i = �conv

2; i .
At this point, a land cover map of the analyzed area at the timet2

can be generated by labeling each pixelx2; j in accordance with the
ML decision rule:

x2; j 2 !k; if !k = argmax
! 2


P̂2(!i)p̂2(x2; j=!i) : (9)

IV. EXPERIMENTAL RESULTS

Different experiments were carried out on a data set made up of two
multispectral images acquired by the Thematic Mapper (TM) sensor
of the Landsat 5 satellite. The selected test site was a section (412�

382 pixels) of a scene showing Lake Mulargias on the Island of Sar-
dinia, Italy. The two images used in the experiments were acquired in
September 1995 (t1) and July 1996 (t2). Fig. 1 shows channels 5 of
both images. The available ground truth was used to derive a training
set and a test set for each image (see Table I). In particular, five land
cover classes that characterized the test site at the above dates (i.e.,
urban area, vineyard, forest, pasture, water) were identified. It is worth
noting that the images were acquired in slightly different periods of the
year. This involves some differences in the spectral responses of the
classes in the two images. Such differences are mainly due to the dif-
ferent light conditions at the image acquisition dates and to the different
levels of growth of the vegetation shown in the images. Therefore, the
unsupervised retraining problem turned out to be rather complex.

To carry out the experiments, we assumed that only the training set
associated with the image acquired in September 1995 was available.
The training set for the July 1996 image was only used to evaluate the
performances of the proposed technique trough a comparison with a
supervised approach.

The ML classifier was trained (in a supervised way) on the
September 1995 image to estimate thea priori probabilities and the
parameters that characterize the density functions of the classes at
the timet1. The assumption of normal distributions was made for the
density functions of the classes (this was a reasonable assumption,
as we considered TM images). After training, the effectiveness of
the classifier was evaluated on the test sets for both images. The
classification accuracies obtained are given in Table II. On the one
hand, as expected, the classifier provided a high classification accuracy
(90.97%) for the test set related to the September 1995 image. On the
other hand, it exhibited very poor performances for the July 1996 test
set. In particular, the overall classification accuracy for the July test set
was equal to 50.43%, which cannot be considered an acceptable result.

In order to better understand the behavior of the classifier, in Fig. 2(a)
and (b), the distributions (in the feature space) of subsets of training
samples corresponding to the September 1995 and July 1996 images
are represented, respectively. Bands 2 and 5 were selected for the rep-
resentation, as they provide the best separation of classes in the fea-
ture space (a feature-selection process based on the Jeffreys–Matusita
distance [1], [14] was applied to identify such bands). In greater de-
tail, Fig. 2(a) shows the estimates of the distributions of the classes
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Fig. 1. Bands 5 of the Landsat-5 TM images utilized for the experiments. (a) Image acquired in September 1995 and (b) image acquired in July 1996.

TABLE I
THE TRAINING AND THE TEST SETS USED FOR THEEXPERIMENTSCARRIED

OUT ON THE IMAGES ACQUIRED IN SEPTEMBER1995AND JULY 1996

TABLE II
CLASSIFICATION ACCURACIESOBTAINED FOR THESEPTEMBER1995AND JULY

1996 TEST SETS BY A CLASSICAL SUPERVISEDML CLASSIFIER TRAINED

ON THE SEPTEMBER1995 TRAINING SET

obtained by supervised learning at the timet1 (the contours of the esti-
mated Gaussian conditional densities are represented for a value equal
to 3�) and the distribution of a subset of training samples of thet1

image in the feature space. Analogously, Fig. 2(b) presents the afore-
mentioned contours obtained by supervised learning att1 compared
to the distribution of a subset of training samples of the classes att2.
A comparison of the two figures points out the intrinsic complexity of
the faced problem. These differences explain the low accuracy obtained
for the July 1996 test set by the ML classifier trained on the September
1995 image.

At this point, the proposed technique was applied to thet2 image
(July 1996) in order to compute, in an unsupervised way, the new es-
timates of thea priori probabilities and density function parameters of
the considered land cover classes. The parameters of the ML classifier
trained on thet1 image (September 1995) were exploited to initialize
the EM algorithm. At the end of the iterative process, the resulting es-
timates were associated with the new parameters of the ML classifier.
In order to evaluate the accuracies of the new estimates, the classifier
was tested again on the July 1996 test set. For the sake of compar-
ison, a supervised ML classifier was trained and subsequently tested
on the July 1996 image by using the classical approach (i.e., exploiting
the training set for a supervised parameter estimation). The results ob-
tained are given in Table III. As one can see, the classification accu-
racy provided by the proposed classifier for the July test set increased
by about 42%, compared to the one exhibited by the classifier trained
on the September image (92.76% versus 50.43%). It is worth noting
that this improvement was shared by most of the considered classes. A
comparison with the supervised ML classifier trained and tested on the
July image showed that such a classifier provided an overall accuracy
(92.66%) very similar to the one yielded by the proposed technique
(92.76%).

If we analyze the situation in the feature space after the unsuper-
vised retraining [see Fig. 2(c)], we can observe that the new estimates
achieved by the proposed unsupervised technique fit rather accurately
the distributions of the training samples in thet2 image.

A further insight into the behavior of the proposed method is pro-
vided by Fig. 3, where the trend of the overall classification accuracy
versus the number of EM-algorithm iterations is plotted. As can be
seen, the overall classification accuracy increases significantly from
50.43% (i.e., for the initial estimates) to 88.19% in only ten iterations
and reaches the final value of 92.76% in 23 iterations.

As far as the computational load is concerned, in our experiments,
carried out on a Sun Workstation Ultra-Sparc 80, the time taken by the
algorithm to reach convergence (in 23 iterations) was equal to 478 s.
This seems rather a reasonable time, considering both the complexity
of the problem and the high accuracy of the results obtained.
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(a) (b)

(c)

Fig. 2. Comparisons between the distributions of classes in the images
considered (represented by a subset of samples randomly extracted from the
corresponding training set) and their estimates (the contours of the estimated
Gaussian conditional densities are represented for a value equal to 3�). (a)
Distributions of classes in the September 1995 image and their estimates
achieved by supervised learning carried out on the September 1995 training
set and (b) distributions of classes in the July 1996 image and their estimates
achieved by supervised learning carried out on the September 1995. (c)
Distributions of classes in the July 1996 image and their final estimates
achieved by the proposed unsupervised technique applied to the July 1996
image.

V. DISCUSSION ANDCONCLUSIONS

An unsupervised retraining technique for ML classifiers has been
presented that constitutes a useful support for remote sensing mon-
itoring systems based on multitemporal images. The proposed tech-
nique allows the generation of accurate land cover maps of a specific
study area also from images for which a reliable ground truth (hence a
suitable training set) is not available. This is made possible by an unsu-
pervised updating of the existing classifier’s parameters (obtained by
classical supervised training on a specific image) on the basis of the
distribution of the new image to be classified.

The proposed technique can be used in particular applications in
which the areas of interest are characterized by the same land cover
classes over time. This means that only the spatial distributions of land
covers are assumed to change over time.

Our approach exploits the capabilities of the EM algorithm to esti-
mate the prior probabilities and conditional density functions of classes
at the timet2 on the basis of both the estimates performed at the timet1

and the distributionp(X2) of the new image in the feature space. It is
worth noting that this approach does not consider the spatial distribu-
tions of classes in the new scene but only the distributions of patterns
in the feature space. This results in a robust behavior with respect to
land cover changes that may occur in the analyzed area between the
two times considered.

The presented method is based on the assumption that the estimates
of the distributions of classes derived from a supervised training on a
previous image of the considered area can represent rough estimates
of the class distributions in the new image to be categorized. Then the
EM algorithm is applied in order to improve such estimates iteratively
on the basis of the global density function of the new image. It is worth
noting that when the initial estimates are very different from the true
ones (e.g., when the considered image has been acquired under atmo-
spheric or light conditions very different from the ones in the image
exploited for the supervised initial training of the classifier), the EM
algorithm may lead to inaccurate final values. Therefore, in order to
overcome this problem, we recommend the application of a suitable
preprocessing phase aimed at reducing the main differences between
images due to the aforementioned factors (simple relative calibration
techniques, which do not require any atmospheric data, can be adopted
[15], [16]). In addition, the sequence of images to be classified should
be acquired in similar periods of the year, as the spectral responses of
the related land covers (hence, the corresponding distributions in the
feature space) may significantly change in different seasons.

Experiments carried out on different multitemporal data sets con-
firmed the validity of the proposed technique (for brevity, only the re-
sults obtained on a data set have been reported in this communication).
In particular, they pointed out the capability of the proposed technique
to update, in a fully unsupervised way, the classifier’s parameters in
order to match the statistical class distributions of the new images to
be classified. Consequently, the resulting classifiers revealed were very
effective and attained high classification accuracies for the new images
without relying on the corresponding training sets. It is worth noting
that, despite some differences in the atmospheric and light conditions
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TABLE III
CLASSIFICATION ACCURACIESOBTAINED FOR THEJULY 1996 TESTSET BY THE

PROPOSEDCLASSIFIER RETRAINED ON THE JULY 1996 IMAGE. FOR THESAKE

OF COMPARISON, THE CLASSIFICATION ACCURACIESACHIEVED BY A

CLASSICAL SUPERVISEDML CLASSIFIER TRAINED AND TESTED ON

THE JULY 1996 IMAGE ARE ALSO GIVEN

Fig. 3. Classification accuracy for the July 1996 test set versus number of
iterations of the EM algorithm.

between images, in all the experiments carried out, we obtained high
accuracies without applying any preprocessing technique to the data.
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