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Unsupervised Retraining of a Maximum Likelihood note a multispectral image consisting/af pixels acquired in the area
Classifier for the Analysis of Multitemporal Remote under analysis at the time,, =1_; being the feature vector associated
Sensing Images with the jth pixel of the image. Lef) = {w;, ws, ---, we} be the
set ofC' land cover classes that characterize the geographical area con-
Lorenzo Bruzzone and Diego Fernandez Prieto sidered at;. Let Xy be a multivariate random variable that represents

the pixel values (i.e., the feature vector valuesXin. Finally, let us

assume that a reliable ground truth (from which a training¥éetan

A Adb?tra():t—lAn lfJnsupervised rgtrair?ing technigue fﬁr a maxlilmum :ikelil- be derived) is available af.

ood (ML) classifier is presented. The proposed technique allows the clas- . .
sifier's parameters, obtained by supervised learning on a specific image, to Inthe context. Qf the Bayes decision theory, the decision rule adopted
be updated in a totally unsupervised way on the basis of the distribution PY an ML classifier is expressed as follows [1], [9]:
of a new image to be classified. This enables the classifier to provide a high
accuracy for the new image even when the corresponding training set is not x(,; €wg, If wi = argmax {R (wi)p1 (1, ,»/w,;)} (@)
available. w;€Q

Index Terms—Expectation maximization algorithm, land-cover map up-
dating, maximum likelihood (ML) classification, remote sensing, unsuper-
vised retraining.

where Py (w;) andp, (X, /w;) are the estimates of thepriori prob-
ability and of the conditional density function of the classin the
imageX, respectively. It is worth noting that the subscripis used

here to stress the dependencies of both statistical terms on the consid-
|. INTRODUCTION eredimagé& . According to (1), the training phase of an ML classifier

In the past few years, supervised classification techniques th'_s_ts in the e_stlmatlonS of taepriori probability P (w:) an_d the
proven effective tools for automatic generation of land cover maﬁgnd't'onal Qensny)l(Xl/wi) for_ each clasgi € {1. Such estimates .
of extended geographical areas [1]-[5]. The capabilities of Sugﬁn_be obta{ned by using class_lcal superw_sed appro_a_ches that exploit
techniques and the frequent availability of remote sensing imaggg‘,e information that is present in the considered training¥se{1],
acquired periodically in many regions of the world by spaceborr{ - .
sensors, make it possible to develop monitoring systems aimed at€t US Now assume that, at the time a new land cover map of
mapping the land cover classes that characterize specific geograp%ﬁlStUdy_ area is required. L&, = {21, T2,2, 777 2, v} (N
areas on a regular basis. From an operational point of view, the imp'f@ay be d_n‘fer_ent from\f) be a new |mage_ach|red atin the study
mentation of a system of this type requires the availability of a suitag&e@ Which is assumed to be characterized by the same set of land
training set (and hence of ground truth information) for each neipVer classes = {wi, ws, -, wc}. Thismeans that only the spatial
image to be categorized. However, the collection of a reliable grouﬂ@mbuuons of such classe_s may change betweeand,, but no
truth is usually an expensive task in terms of time and economic cd2g" land covers can be noticed‘at Let us also assume thatfat the
Consequently, in many cases, it is not possible to rely on trainif rresponqlmg training setis not avallabl_e._Thls prevents t_he generation
data as frequently as required to ensure an efficient monitoring of the required land cover map as the training of the classifier cannot be

site considered. This is a serious drawback that limits the operatiof?glrfo_rmed fie. both”_thapriori probabilityj%(w,;))a.ndthe conditional
capabilities of the aforementioned monitoring systems. density functionp: (X2 /w;) of each class; € (2 in the new image

We face this problem by focusing on an important group of reat? car?not be estimateq by traditional superv.iged approaches]..At the
world applications in which the considered test sites can be assunj@{® time. itis not possible to apply the classifier trained on the image
to be characterized by fixed sets of land cover classes: only the s&- to the imageX., because, n general, the estlma_ltes _Of statistical
tial distributions of such land covers are supposed to vary over tin%iasS parameters alt.do. not provide accurate approxmapons for thg
Examples of such applications include studies on forestry, territorft'"e terms af;. This is due to several factors (e.g., differences in

management, and natural resource monitoring on a national or e\%ﬁ atmospheric and light conditions at the image acquisition dates,
continental scale [6]-[8] sensor nonlinearities, different levels of soil moisture, etc.) that alter

In this communication, we present an unsupervised retraining te&ﬁ‘-e spectral signatures of land cover classes in different images and

nigue for maximum likelihood (ML) classifiers [9] that overcomes thgonsequently, the distributions of such clas_ses in the_ f_eature space.
aforementioned drawback of land cover monitoring systems. In par-lr,' this context, we propose an unsupgrwsed retraining technique to
ticular, the proposed technique allows the existing statistical paranﬁjt?—r've’ f°r each .classi € Q, reliable estlr_n_ates of both, (w; ) ar_1d i
ters of an ML classifier (estimated by supervised learning on a speciﬁé(Xz/w?)' starting from t_he current classifier parameters obtained in
image) to be updated whenever a new image lacking the correspondirngf!Pervised way at the tinte.

training set has to be analyzed. The unsupervised retraining phase per-

mits the classifier to generate an accurate land cover map from the new !ll- THE PROPOSEDUNSUPERVISEDRETRAINING TECHNIQUE

image even when the related training set is not available. The main idea of the proposed technique is that the first approximate
estimates of the parameter values that characterize the classes consid-
Il. GENERAL FORMULATION OF THE PROBLEM ered at the time. can be obtained by exploiting the classifier's pa-

rameters estimated at the tirheby supervised learning. In particular,
for each class); € €2, the initial values of both the prior probability
PJ(w;) and the conditional density functigrf (X./w;) can be ap-
proximated by

Let us consider an ML classifier for the periodical monitoring of
specific geographical area. L&, = {z1,1, ®1,2, -+, 1, } de-
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rameters of the classes i@t Therefore, we suggest improving such An important aspect of the EM algorithm concerns its convergence
rough estimates by exploiting the information associated with the digroperties. Even though convergence can be ensured, it is impossible
tribution p2(X>) of the new imageX.. In particular, the proposed to guarantee that the algorithm will converge to the global maximum of
method is based on the observation that the statistical distributiontlé log-likelihood function (only in few specific cases is it possible to
the pixel values iX, can be described by a mixed density distributiomnsure the convergence to the global maximum). A detailed description
with as many components as the classes to be recognized of the EM algorithm and its theoretical aspects is beyond the scope
of this paper. We refer the reader to the literature for a more detailed
analysis of such an algorithm and its properties [11], [13].

The estimates obtained for each clagse €2 at convergence (i.e.,
P5on¥(wq), wsot? and ES‘”}‘) are the new parameters of the ML
where the mixing parameters and the component densities age thelassifier at the time-, i.e., Py(wi) = P5o"(wi); fia,i = psop;
priori probabilities and the conditional density functions of the classesg, . = 577",
respectively [10]. In this context, the retraining of the ML classifier At this point, a land cover map of the analyzed area at the time
at the timet> becomes a mixture density estimation problem. In ouran be generated by labeling each pixgl; in accordance with the
case, this problem involves the estimation of the parameter viécter ML decision rule:

p2(X2) Zpo(u, (Xo/ws) (3

[9271, .P;)(wl), 92’2, Pg(u)z), ey, 92,0, Pg(wc)], where each com-
ponentf,, ; represents the vector of parameters that characterizes the x5 ; € wy, if wp = arg max{ g(w,-)pg(xg,j/wi)}. 9)
density functiorp- (X> /w; ), which, given its dependence 6s ;, can wi €L

be rewritten ag2 (X2 /w;, 62,5). The components of; can be esti-

mated by maximizing a log-likelihood functiatiX. /8- ) defined as
IV. EXPERIMENTAL RESULTS

X By — , (BN (e S B Different experiments were carried out on a data set made up of two
tX2/02) = Z log {ZPZ(M/&)M(“’]/J“ 02)} - @ multispectral images acquired by the Thematic Mapper (TM) sensor
of the Landsat 5 satellite. The selected test site was a sectionq412
The expectation maximization (EM) algorithm [11]-[13] is one oB82 pixels) of a scene showing Lake Mulargias on the Island of Sar-
the most powerful solutions to this type of problem. It consists of twdinia, Italy. The two images used in the experiments were acquired in
main steps: an expectation step and a maximization step. Both st8pptember 1995) and July 1996#). Fig. 1 shows channels 5 of
are iterated so that, at each iteration, the estimated parameters probioth images. The available ground truth was used to derive a training
an increase in the log-likelihood functid(X. /8-) until a local max- set and a test set for each image (see Table I). In particular, five land
imum is reached. cover classes that characterized the test site at the above dates (i.e.,
To further explain the proposed approach, let us consider, for simrban area, vineyard, forest, pasture, water) were identified. It is worth
plicity, the case in which all classes includedircan be described by noting that the images were acquired in slightly different periods of the
Gaussian distributions. In this context, the density function associatgshr. This involves some differences in the spectral responses of the
with each class); att, can be completely described by the mean vectalasses in the two images. Such differences are mainly due to the dif-
w2, and the covariance matr: ;. Therefore, the vector of parame-ferent light conditions at the image acquisition dates and to the different

ters to be estimated becomes levels of growth of the vegetation shown in the images. Therefore, the
unsupervised retraining problem turned out to be rather complex.
02 = [p2,1, Za,1, Pa(wi), -++, p2, 0, Ba, 0, Po(we)].  (5) To carry out the experiments, we assumed that only the training set

associated with the image acquired in September 1995 was available.
It can be proven that the equations for estimating the statistical termise training set for the July 1996 image was only used to evaluate the
associated with a generic classare the following [11]-[13]: performances of the proposed technique trough a comparison with a
Ps (wi)pi. o supervised approach.
o= (wi)pz (s ;/wi) The ML classifier was trained (in a supervised way) on the
o J€Xy p*laz, ) September 1995 image to estimate ¢hpriori probabilities and the

Pyt (wi) = N ®) parameters that characterize the density functions of the classes at
the timet,. The assumption of normal distributions was made for the
) Dy (wips (s, jfwi) density functions of the classes (this was a reasonable assumption,
= p3(22, ;) o7 as we considered TM images). After training, the effectiveness of
2,77 =222 B (oS (a5 J00) (7) the classifier was evaluated on the test sets for both images. The
7 J k2

classification accuracies obtained are given in Table Il. On the one
hand, as expected, the classifier provided a high classification accuracy
(90.97%) for the test set related to the September 1995 image. On the
Z P (w,)pz(m 7/»J7 {er ~ lpe, ],+1} other hand, it exhibited very poor performances for the July 1996 test
e, ex P32, / set. In particular, the overall classification accuracy for the July test set
[S, ]t = 2222 B (o (e o)) was equal to 50.43%, which cannot be considered an acceptable result.
Z 2 (w')spz(“’ e In order to better understand the behavior of the classifier, in Fig. 2(a)
ZICR) and (b), the distributions (in the feature space) of subsets of training
(8) samples corresponding to the September 1995 and July 1996 images
are represented, respectively. Bands 2 and 5 were selected for the rep-
where the superscriptsands+ 1 refer to the values of the parametersesentation, as they provide the best separation of classes in the fea-
at the current and next iterations, respectively. The estimates are tlve space (a feature-selection process based on the Jeffreys—Matusita
tained starting from the initial values of the considered parameters atidgtance [1], [14] was applied to identify such bands). In greater de-
iterating the above equations up to convergence. tail, Fig. 2(a) shows the estimates of the distributions of the classes

2
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Fig. 1. Bands 5 of the Landsat-5 TM images utilized for the experiments. (a) Image acquired in September 1995 and (b) image acquired in July 1996.

TABLE | At this point, the proposed technique was applied totthenage
THgTRAOINING AIND ;HEZEST SETS USSEED FOR THElEgS’ER'MEJNTSCfggéED (July 1996) in order to compute, in an unsupervised way, the new es-
UT ON THE IMAGES ACQUIRED IN SEPTEMBER 199AND JULY timates of thea priori probabilities and density function parameters of

Number of patterns Number of patterns the_ considered Ignd cover classes. The parameters o_f the ML _c_Ia§S|f|er

Land-cover classes (September 1995) (July 1996) trained on the, image (September 1995) were exploited to initialize

Training set | Test set Trainingset | Testset  the EM algorithm. At the end of the iterative process, the resulting es-

Pasture 554 589 554 589 . . . .
Forest 304 274 304 274 timates were associated with the new parameters of the ML classifier.
Urban area 408 418 408 418 In order to evaluate the accuracies of the new estimates, the classifier
“\’;‘i‘rferyb;jy s = o =L was tested again on the July 1996 test set. For the sake of compar-
Overall 2249 1049 2249 1949 ison, a supervised ML classifier was trained and subsequently tested

on the July 1996 image by using the classical approach (i.e., exploiting
the training set for a supervised parameter estimation). The results ob-

TABLE I tained are given in Table IIl. As one can see, the classification accu-
CLASSIFICATION ACCURACIESOBTAINED FOR THE SEPTEMBER1995AND JuLy  racy provided by the proposed classifier for the July test set increased
1996 TeST SETS BY A CLASSICAL SUPERVISEDML CLASSIFIERTRAINED by about 42%, compared to the one exhibited by the classifier trained

ON THE SEPTEMBER 1995 TRAINING SET on the September image (92.76% versus 50.43%). It is worth noting

that this improvement was shared by most of the considered classes. A
comparison with the supervised ML classifier trained and tested on the

Classification accuracy (%
Land-cover class caty y (%o}

September 1995 test set July 1996 test set July image showed that such a classifier provided an overall accuracy
Pasture 2251 19.52 (92.66%) very similar to the one yielded by the proposed technique
Forest 97.44 95.62 (92.76%).
Urban area 94.73 90.43 : : H
Water body {0600 61 If we analyze the situation in the feature space after the unsuper-
Vineyard 62,30 2473 vised retraining [see Fig. 2(c)], we can observe that the new estimates
Overall 90.97 50.43 achieved by the proposed unsupervised technique fit rather accurately

the distributions of the training samples in theimage.

A further insight into the behavior of the proposed method is pro-
obtained by supervised learning at the timéthe contours of the esti- vided by Fig. 3, where the trend of the overall classification accuracy
mated Gaussian conditional densities are represented for a value egeesdus the number of EM-algorithm iterations is plotted. As can be
to 3r) and the distribution of a subset of training samples oftthe seen, the overall classification accuracy increases significantly from
image in the feature space. Analogously, Fig. 2(b) presents the afd6:43% (i.e., for the initial estimates) to 88.19% in only ten iterations
mentioned contours obtained by supervised learning @bmpared and reaches the final value of 92.76% in 23 iterations.
to the distribution of a subset of training samples of the classes at  As far as the computational load is concerned, in our experiments,
A comparison of the two figures points out the intrinsic complexity ofarried out on a Sun Workstation Ultra-Sparc 80, the time taken by the
the faced problem. These differences explain the low accuracy obtaitadgorithm to reach convergence (in 23 iterations) was equal to 478 s.
for the July 1996 test set by the ML classifier trained on the Septemiétis seems rather a reasonable time, considering both the complexity
1995 image. of the problem and the high accuracy of the results obtained.
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8 T The proposed technique can be used in particular applications in
which the areas of interest are characterized by the same land cover
. classes over time. This means that only the spatial distributions of land
covers are assumed to change over time.
b | Our approach exploits the capabilities of the EM algorithm to esti-
mate the prior probabilities and conditional density functions of classes
w at the time2 on the basis of both the estimates performed at thettime
i il and the distributiop(X-) of the new image in the feature space. It is
] worth noting that this approach does not consider the spatial distribu-
a0l tions of classes in the new scene but only the distributions of patterns
in the feature space. This results in a robust behavior with respect to
i land cover changes that may occur in the analyzed area between the
two times considered.
ool The presented method is based on the assumption that the estimates
of the distributions of classes derived from a supervised training on a
{'1.u - previous image of the considered area can represent rough estimates

of the class distributions in the new image to be categorized. Then the
EM algorithm is applied in order to improve such estimates iteratively
on the basis of the global density function of the new image. It is worth
noting that when the initial estimates are very different from the true
Fig. 2. Comparisons between the distributions of classes in the imagsses (e.g., when the considered image has been acquired under atmo-
considered (represented by a subset of samples randomly extracted fromg{hgeric or light conditions very different from the ones in the image

corresponding training set) and their estimates (the contours of the estima . . ew . -
Gaussian conditional densities are represented for a value equal)tda3 & %Ioned for the supervised initial training of the classifier), the EM

Distributions of classes in the September 1995 image and their estima¥gorithm may lead to inaccurate final values. Therefore, in order to
achieved by supervised learning carried out on the September 1995 trainbwgrcome this problem, we recommend the application of a suitable
set and (b) distributions of classes in the July 1996 image and their estiméﬁ@éprocessing phase aimed at reducing the main differences between

achieved by supervised learning carried out on the September 1995. . . . . . .
Distributions of classes in the July 1996 image and their final estimatey - 9<> due to the aforementioned factors (simple relative calibration

achieved by the proposed unsupervised technique applied to the July 1%@““(1“65’ which do not require any atmospheric data, can be adopted
image. [15], [16]). In addition, the sequence of images to be classified should
be acquired in similar periods of the year, as the spectral responses of
the related land covers (hence, the corresponding distributions in the
V. DISCUSSION ANDCONCLUSIONS feature space) may significantly change in different seasons.
Experiments carried out on different multitemporal data sets con-
An unsupervised retraining technique for ML classifiers has bedinmed the validity of the proposed technique (for brevity, only the re-
presented that constitutes a useful support for remote sensing mauits obtained on a data set have been reported in this communication).
itoring systems based on multitemporal images. The proposed tetthparticular, they pointed out the capability of the proposed technique
nigue allows the generation of accurate land cover maps of a specificupdate, in a fully unsupervised way, the classifier's parameters in
study area also from images for which a reliable ground truth (hencemer to match the statistical class distributions of the new images to
suitable training set) is not available. This is made possible by an unse-classified. Consequently, the resulting classifiers revealed were very
pervised updating of the existing classifier's parameters (obtained &ffective and attained high classification accuracies for the new images
classical supervised training on a specific image) on the basis of thighout relying on the corresponding training sets. It is worth noting
distribution of the new image to be classified. that, despite some differences in the atmospheric and light conditions

©
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TABLE I
CLASSIFICATION ACCURACIESOBTAINED FOR THEJULY 1996 TEST SET BY THE
PROPOSEDCLASSIFIER RETRAINED ON THE JULY 1996 MAGE. FOR THE SAKE
OF COMPARISON, THE CLASSIFICATION ACCURACIESACHIEVED BY A
CLASSICAL SUPERVISED ML CLASSIFIER TRAINED AND TESTED ON
THE JULY 1996 MAGE ARE ALSO GIVEN

Classification accuracy (%)

Land-cover class Proposed unsupervised Classical ML classifier trained on
retraining technique the July training set
Pasture 94.06 92.02
Forest 87.22 92.70
Urban area 93.06 93.30
Water body 100.00 100.00
Vineyard 64.10 58.97
Overall 92.76 92.66
100
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Fig. 3. Classification accuracy for the July 1996 test set versus number of

iterations of the EM algorithm.

between images, in all the experiments carried out, we obtained higﬁ4

(23]

accuracies without applying any preprocessing technique to the data.
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