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Automatic Analysis of the Difference Image for
Unsupervised Change Detection
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Abstract—One of the main problems related to unsupervised learning process of the classifiers. The latter performs change
change detection methods based on the “difference image” lies in detection by making a direct comparison of the two multispec-
the lack of efficient automatic techniques for discriminating be- tral images considered, without relying on any additional infor-

tween changed and unchanged pixels in the difference image. Such . . .
discrimination is usually performed by using empirical strategies mation. Although the supervised approach exhibits some advan-

or manual trial-and-error procedures, which affect both the accu-  tages over the unsupervised one (e.g., capability to explicitly
racy and the reliability of the change-detection process. To over- recognize the kinds of land cover transitions that have occurred,

come such drawbacks, in this paper, we propose two automatic robustness to the different atmospheric and light conditions at
techniques (based on the Bayes theory) for the analysis of the dif- \he o acquisition times, ability to process multisensor/multi-

ference image. One allows an automatic selection of the decision . 51 th i f ot it
threshold that minimizes the overall change detection error prob- source images [5]), the generation of an appropriate multitem-

ability under the assumption that pixels in the difference image Poral ground truth is usually a difficult and expensive task. Con-
are independent of one another. The other analyzes the difference sequently, the use of effective unsupervised change-detection

image by considering the spatial-contextual information included methods is fundamental in many applications in which a ground
in the neighborhood of each pixel. In particular, an approach based truth is not available.

on Markov Random Fields (MRF’s) that exploits interpixel class . .
dependency contexts is presented. Both proposed techniques re- In this paper, we focus on one of the most W'deh_/ used types
quire the knowledge of the statistical distributions of the changed Of unsupervised change-detection techniques, which are based
and unchanged pixels in the difference image. To perform an unsu- on the so-called “difference image” [10], [11]. These techniques
pervised estimation of the statistical terms that characterize these process the two multispectral images acquired at two different
distributions, we propose an iterative method based on the EXpec- yaraq (or vegetation indexes [10], principal components [10],
tation-Maximization (EM) algorithm. Experimental results con- . ) ;
firm the effectiveness of both proposed techniques. etc., derived from such images) in order to generate a further
image. The computed difference image is such that the values
of the pixels associated with land cover changes present values
significantly different from those of the pixels associated with
unchanged areas. Changes are then identified by analyzing (e.g.,
. INTRODUCTION thresholding) the difference image. For example, the univariate
N THE past few years, there has been a growing interest?mage diﬁerencing tech_nique [1_0], [11]_generates the difference
the development of automatic change-detection techniqdB¥19€ by subtracting, pixel by pixel, a single spectral band of the
for the analysis of multitemporal remote sensing images [1]_[g]fyo multispectral images under z_:maly3|s. The choice of the spec-
This interest stems from the wide range of applications in whi¢ffl Pand depends on the specific type of change to be detected.
change detection methods can be used, like environmental mBR-analogous concept is applied by the widely used change
itoring [7], agricultural surveys [5], urban studies [1], foresy€ctor analysis (CVA) techn_lque. In this case, several spectr_al
monitoring [2], [8], [9], etc. channels are used at each time. Eor each pair of corre_spondmg
Usually, change detection involves the analysis of two regiBX€ls, a “spectral change vector” is computed as the difference
tered multispectral remote sensing images acquired in the satfgveen the feature vectors at the two times. Then, the pixel
geographical area at two different times. Such an analysis aitdues in the difference image are associated with the modules
atidentifying land cover changes that have occurred in the stu@fthe spectral change vectors. It follows that unchanged pixels
area between the two times considered. In the remote sensindigSent small gray-level values, whereas changed pixels present
erature, two main approaches to the change-detection probféther large values. Other techniques, like image ratioing, pro-
have been proposed: the supervised approach and the unsufiée the difference image by computing the ratio, instead of the
vised approach [5], [10]. The former is based on supervised cl§ference, between multitemporal images [10].
sification methods, which require the availability of a multitem- In spite of their relative simplicity and widespread use, the

poral ground truth in order to derive a suitable training set for tfforementioned change-detection methods  exhibit a major
drawback: a lack of automatic and nonheuristic techniques

. . . _for the analysis of the difference image. In fact, in classical
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the decision threshold is based on the assumption (reasonalnld VI, respectively. Finally, conclusions are drawn in Section
but not always verified) that only a few changes occurred Milll.
the study area between the two dates considered. Under this

hypothesis, the density function of the pixel values in the Il. APPROACH TO THEUNSUPERVISEDESTIMATION OF
difference image can be confused with the density function STATISTICAL TERMS ASSOCIATED WITH CLASSES IN THE
of the unchanged pixels. According to this assumption, pixels DIFFERENCEIMAGE

having gray-level values significantly different from the mean
of the density function of the difference image are labeled a
changed. In particular, the deqision thre_shold is fi>.<eah¢a,g two different times,t; and¢,. Let us assume that such im-
from the mea_m_value of the d|_fference_ Imags; be!ng the ages have been coregistered [18], [19] and that the possible
standard deviation of the density function of the pixel value flerences in the light and atmospheric conditions at the

n :heldlffzrence |magedan;d blelnt?]_a realtnutmlt)r?r derllvet(_j byt\go times have been corrected [20]. L& be a random
a trial-and-error procedure. In this context, the selection of .\ " e rang€0,1,---,G — 1], and let it repre-

the parameten strongly depends on the end-user’s subjectiv\{aem the values of thé x J pixels in the difference image

criteria, which may lead to unreliable change-detection resulfs. = _ {X(i,j),1<i<1I,1<j<.J}obtained by applying

In addition, such a selection usually requires several trials a{p{g CVA tec7hni7qug t@i énd—XQ_—For the sake of simplicity,

hence,_a nonnegligible (_:omputanon time [13], [14]. ) the two proposed techniques will be presented in the context of
. In this paper, we define the_ problem of the analygs of thRe cvA method. However, a generalization to other methods

difference image for unsupervised change detection in termso?fsed on the difference image is straightforward.

the Bayes decision theory. The application of this theory re-

quires the estimations of thee priori probabilities and of the A, Basic Rationale

conditional density functions for the classes associated with theU

. : ; ; -Unlike classical unsupervised methods used in remote
unchanged and changed pixels in the difference image. To trsuésnsin applications, our approach involves formulating the
end, we present an approach (based on the Expectation-Maxi- 9 app ' P 9

mization algorithm [15]-[17]) that allows such estimationsto b foblem of the analysis of the difference image for change

- . RSN etection in terms of the Bayesian decision theory. Within this

performed in an unsupervised way. Within this framework, tw; . A .
. . . . . ramework, we aim at discriminating between two opposite
automatic techniques for the analysis of the difference image are ; :
classeswn and w.., associated with unchanged and changed

presented that overcome the main problems inherent in classic . . .
techniques. One assumes that the gray-level values of the piféfsels’ respectively. In order to analyze the difference image
' n the basis of the Bayes theory, the main problems to be

in the difference image are independent of one another. Un@%ﬁved are the estimations of both the probability density

this assumption, the Bayes rule for minimum error is applied . T -
order to select, in an automatic way, the decision threshold tm?Ct'onSp(X/w") andp(X/w.) and thea priori probabilities

minimizes the overall error probability in the change-detectio, wn) and P(w,) of the classes_;n andw., res_pecﬂvely [2.1]'

. : . @enerally, these terms are estimated by using supervised ap-
process. The other technique considers the spatial-contextualin-
formation contained in the difference image in order to increa?e

Let us consider two multispectral image&X); and X.
Fsizel x J acquired in the same geographical area at

roaches that require the availability of a multitemporal ground
ruth. However, as we deal with an unsupervised approach,

the accuracy of the final change-detection map. In particular, #L estimation brocess cannot be performed on the basis of a

approach based on Markov Random Fields (MRF’s) is propostc?gning set.

that exploits the interpixel class dependence to model the Prion ihis paper, we propose an unsupervised method for esti-

probabilities of classes. ating the aforesaid statistical terms. In particular, the method

In order to assess the effectiveness of both proposed tegbéumes that the probability density functjg@¥) computed

nigues, we carried out experiments on two different data se6§T the pixel values in the difference imaBa, can be modeled

One was a real mulutgmporal data set cpmposed of two mul 5 a mixture density distribution consisting of two density com-
spectral |mages.ach|red by the Thematic Mapper sensor of ents associated with the classgsandw.., respectively, i.e.,
Landsat 5 satellite. The other was a synthetic data set generate

to_ evaluate the robu_stness of the proposed techniques against p(X) = p(X/w,)P(wy) + p(X/we) P(w,). (1)
different levels of noise.

This paper is organized into eight sections. The next sectionUnder this assumption, the unsupervised estimations of
introduces the formulation of the unsupervised change-det@X/wy), p(X/w.), P(w,), and P(w.) can be performed by
tion problem in terms of the Bayes theory. In particular, an aysing the EM algorithm.
tomatic method for the unsupervised estimation of the statis- .
tical terms required by the Bayesian approach is presented. SecEStimations op(X/w,.), p(X/we), P(wn), and P(w.) by
tion Il addresses the automatic selection of the minimum err§}e EM Algorithm
threshold, under the assumption that pixels in the differenceThe EM algorithm is a general approach to maximum-likeli-
image are independent of one another. Section IV deals with theod (ML) estimation for incomplete data problems [15]-[17],
context-based approach to the analysis of the difference imafg2]. It consists of an expectation step and a maximization step,
The data sets used in the experiments are detailed in Sectiomkich are iterated until convergence. The expectation step is
together with the experiments carried out. The results obtaineamputed with respect to the unknown underlying variables,
in the real and synthetic data sets are reported in Sectionsuéing the current estimates of the parameters, and is conditioned
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by observations. The maximization step provides new estimates A hX)
of the parameters.

We propose using the EM algorithm to estimate the values of
the a priori probabilitiesP(w,,) and P(w.) and the values of
the parameters that characterize the density funcioigw,, )
andp(X/w,). Let us assume that boff X /w,,) andp(X /w..)
can be modeled by Gaussian distributions (this is a reasonable
assumption for many applications involving images acquired by \
passive sensors). In this context, the density function associated >
with the classv,, can be described by the meay and the vari- T, T, X
ances?. Analogously, the density function associated with the
classw, can be described by the meanand the variance?. It
is possible to prove that the equations for estimating the afore-
mentioned statistical terms for the clags are the following Fig. 1. Schematic representation of the thresholding strategy applied to the

Unlabeled
samples

No change Change

[17]; difference-image histograim(.X") for the initialization of the EM algorithm.
3 P (wn)p (X (i, ) /wn) , , , _
Y PH(X (i, 5)) The previously described formulation of the EM algorithm
+ X(i,5)Xp i iati ; ;
PHYw,) = @) allows one to estimate the statistical parameters assoc_lated_ with
. 1J . o both classes,, andw,. under the assumption of Gaussian dis-
3 P'{wn)p (X('LJ)/wn)X(,? ) tributions. However, it is worth noting that more general ap-
Yuex (X (4, 7)) ) proaches to estimating the mixture component parameters might
pitt =— D P (i (3) be adopted. In particular, we recall the semiparametric and non-
Z (w")fp ( ,(Lj")/w") parametric approaches presented in [22] and the generalized
X)X PHX(%,9)) mixture estimation technique proposed in [23].
Ptwa)p (X (4, 5) /wn) o - The estlma_ltes obtained by the _EM algor_lthm at convergence
Z PG [X(i,5) —un]®  can be exploited to analyze the difference image with the tech-
(02 )t :X(m')exp nigues described in the next two sections.
" Z PHwn)p" (X (4, 4) /wn)
£ pH(X(4,5)) Ill. ANALYSIS OF THE DIFFERENCEIMAGE UNDER THE
X()eXp ASSUMPTION OFINDEPENDENTPIXEL VALUES

4 _ _ . : : :
h h ) q q h | fth In this section, an automatic technique aimed at selecting the
where the superscriptandi +1 denote the values ofthe param«g qision threshold that minimizes the error probability in the

eters at the current and next iterations, respectively. Analogo&l‘%nge—detection process is presented. This technique was de-

equatlops are used o estimate ‘h_? prior prob_ablllty "’“?d the m%'fbped under the assumption that pixel values are independent
and variance values of the conditional density function assogk one another

ated with the class.. Under the hypothesis of interpixel independence and ac-

The estimates are obtained by starting from initial Valu%%rdingto the Bayes rule for minimum error, each piXak, )
of the considered statistical terms and by iterating the aboye o gifference imag’ ,, should be assigned to the cljas,s

equations until convergence. It is possible to prove that, flat maximizes the posterior conditional probability, i.e.,
each iteration, the estimated parameters provide an increase

in the log-likelihood functionL(6) = In p(Xpl6), where we =arg  max {P(w;/X(i, 1))}
0 = {P(w,), P(we), fin; e, 02,02 }. At convergence, a local | clened P Xii. i 5
maximum of the log-likelihood function is reached [15], [16]. I Y {P(wi)p(X (1, 5)/wi)}- ®)

The initial values of the estimates can be determined by ex-A vin this criterion to solve the change-detection problem
ploiting the intrinsic characteristics of the difference image ob- PR1yINg 9 P

tained with the CVA technique. In particular, a subSgt of 'bsoﬁggglflenggv\fzgsphﬂdégisthe (:;fgren?riér?e?gfea;mﬁeML
pixels likely to belong tav,, and a subse$. of pixels likely . YT, . @5, andw. o

. . basis of the estimates of the statistical terms obtained by the EM
o belong tow. can be obtained by applying two threshold, algorithm, the optimum threshold valdé can be estimated b
andT,, to the right and left extremes of the histografX ) of g ' P y

the difference image (see Fig. 1). We exprésand?, asT,, = solving the following equation with respect to the varialile
Mp(1 — ) andT, = Mp(1 + «), whereMp, is the middle Plw.)  p(X/wp) ©)
value of i(X) (i.e., Mp = [max{Xp} — min{Xp}]/2), and Plw,) p(X/w.)

a € (0,1) is the initialization parameter that defines the ranggpic in the Gaussian case, is equivalent to solving the fol-
aroundM p, in which pixels cannot be easily identified as eithelrowing quadratic equation:

changed or unchanged. Then the $gts= {X (i, /)| X (4,5) < ) .

T,} andS. = {X(i,)|X(4,j) > 7.} are used to compute (07 — 02)17 4+ 2(pn0o? — peop )1y

the initial estimates of the statistical parameters associated with 9 9 9 9 9 o

the classess,, andw,, respectively. F1eOn = pn0e — 2030 In [

o.P(wy)

—anP(wc)} =0. (V)
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It is worth noting that the accuracy of the threshold valye
was obtained and therefore, the precision of the final change-de- (i-1j-1) (ij-1) | (i+1;j-1)
tection map depends on the accuracies of the estimates provided
by the EM algorithm.

(-1j) (ij) (i+1j)

IV. ANALYSIS OF THE DIFFERENCEIMAGE BY CONSIDERING
SPATIAL-CONTEXTUAL INFORMATION G-1j+) | @i+ | G+1j+D)

In this section, we describe an automatic technique that, un-
like the most widely used approaches to change detection, ex-
plicitly can|ders s_,patlal—contextual mfo_rmatl_on forthe analysﬁg. 2. Second-order neighborhood system defining set used by the considered
of the difference image. Such a technique is based on the BI&F approach.
sumption that the changes to be identified are large enough to

be detected by the sensor used. Under this hypothesis, a pixethe Markov modeling of the conditional distribution of the

belonging to the classy is likely to be surrounded by pixels pixe| labelC; (i, j) given the pixel labels elsewhere, is expressed
belonging to the same class. Therefore, an efficient use of this [24]-[26]

interpixel class dependence may yield more reliable and accu-

rate change-detection results. P(Ci(i, ) /{Ci(g,h), (9. h) # (4,5)})

LettheselC = {C;,1 < I < L} with L = 2!/ be composed = P(Ci(i,5)/{Ci(g,h),(g,h) € N(i,5)})
of all the possible sets of labels in the difference imagg, 1 o o
whereC; = {Ci(4,7),1 <i < I,1 < 5 < J} with Ci(i, j) € = 7 exp[=U(C(6,4)/{Ci(g, 1), (9, h) € N, j)})]
{w,,w,. } isageneric set of labels ¥ . By taking into account (10)

the spatial-contextual information, the Bayes rule for minimum

: : : ; l/(-) is the Gibbs energy function, ard is a normal-
error, as defined in (5), can be rewritten as the selection of a %{ere o NN
C;. that maximizes the following rule: izing factor.U(C1(z, j)/{Ci(g, ). (9, h) € N(i, 5)}) is given

by [24]-[26]
C;, = argmax{P(C,;/Xp)}

C,eC U(Cl(ij)/{Cl(gvh)v(gv h’) € N(ij)})
= agger?jax{P(Cz)p(XD/Cz)} (8) = Z Bor(Ci(i, 5), Ci(g, b)) (11)
l (9,0)ENG )

where P(C;) is the prior model for the class labels, and . . .
p(Xp/Cy) is the joint density function of the pixel Valueswhereék is the Kronecker delta function, which can be ex-
in the difference image given the set of lab€ls. The max-
imization of (8) requires the estimations of baft{C;) and P =1, ifCE§) = Cilg, h)
p(Xp/C;), which are very complex tasks. A simplification of 5:(C1(0, 5), Cilg ) = 0, if Ci(é,5) # Cilg, h) (12)

_the prob_lem can be ach|eve(_j i we_model the spaﬂgl-(_:ontext%%ldﬁ is a constant that tunes the influence of the spatial-con-
information in a local spatial neighborhood. This is rath@t

. X . . bxtual information on the change-detection process. It is worth
a reasonable approach if we consider the interpixel cl

5ting that (11) can be regarded as a simplification of the more
dependence as the interactions between pixel classes decr% 0d (11) 9 Imprficat

pressed as

8R8ral clique potential notation adopted by many authors
rapidly as the distances between pixels increase. In this cont que p P y y

we propose the use of an MRF approach to model the spa I{]—[29]. For more detailed descriptions of MRF’s and of the
context in the prior model for the class labe¥(Cy). In Secn‘lc model adopted in this paper, we refer the reader to

fact, MRF’s provide a methodological framework that aIIowL24H29]'

the interpixel class dependence to be fully exploited. AS B Generation of the Change-Detection Map
further simplification of the problem, we assume the following

conditional independence: According to (8), the generation of the final change-detec-
tion map involves the labeling of all the pixels in the difference
p(Xp/Cy) = H p(X(4,5)/Ci(i, 5)). (9) image so that, under the aforementioned assumptions, the pos-
X(i,5)eXp terior probability is maximized. In terms of the Markovian ap-
proach, this is equivalent to the minimization of the following
A. Description of the Considered MRF Model energy function [24]-[26]:

In order to formulate the problem by using MRF's, itis necest/(X j,, C;)
sary to introduce the concept of a spatial neighborhood system _ U X(5. N /Chli. i
defining setN. Let us define the neighbor system of the pixel 122[ I;J Uaata( X (i 5/ Cult 3))
with coordinates$i, j) asN(¢, j) = {(¢, 1)+(v,¢), (v,5) € N} U O YV AC o h B e N(i. i 13
Although it is possible to use various spatial neighborhood sys- F Ueontear(Cili 1) {C1{g, 1), (9, h) € N(Z, )] (13)
tems, in this paper, we consider a second-order spatial neighfon-the one hand, the energy tetfn, ;... (-) describes the inter-
hood system (see Fig. 2). Therefore, in our cde; {(£1,0), pixel class dependence, which is determined according to (11).
(0,£1), (1, £1), and(—1,+1)}. On the other hand, the terfi,,;,(-) represents the statistics
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of the gray levels in the difference image under the assumptic
of conditional independence, as defined in (9). In the Gaussi:
case, the energy terfiy.:.(-) can be written as

Udata(X(ivj)v CI(ij))
= % 1n|27rrfél(ijj)|

+ 2 (X, 5) - NCZ(i,j))Q[Uél(i,j)]il (14)

whereo?, , . € {07,020} and e,y € {kn, pc} are the
estimates of)tained by the EM algorithm under the assumptic
of independence.

Generally, the minimization of (13) is carried out by using
an iterative algorithm (e.g., the simulated annealing algorithr
[27]). In this paper, we suggest using a simple and fast approa
based on Besag's iterated conditional modes (ICM) algorithn *
which has been proved to converge to a local minimum of th
energy function [30]. According to this strategy, fgthat min-
imizes (13) is obtained by the following algorithm.

1) For all pixelsX(t, j) € X p, initialize Cy(4, j) with the
class that minimizes the noncontextual energy functio
Udata(X(i,j), CI(ij))

2) For all pixelsX (i, j) € X p, updateC;(, j) to the class
that minimizes (13) . Fig. 3. Images of the Island of Elba, Italy, utilized in the experiments. (a) Band

3) Repeat step 2 until convergence is reached. 4 of the Landsat TM image acquired in August 1994, (b) band 4 of the Landsat

TMimage acquired in September 1994, and (c) ground-truth map of the changed
area used as a reference map in the experiments.

©

V. DESCRIPTIONS OFDATA SETS AND EXPERIMENTS

In order to assess the effectiveness of the proposed techniques

for the analysis of the difference image, we considered two dff: Synthetic Data Set

ferent data se_ts: a real multitemporal data set corresponding t§a second data set was artificially generated in order to con-
the geographical area of the Island of Elba, ltaly, and & Syfa| the noise affecting the difference image. This allowed us
thetic data set art|f|C|a_IIy generated to evaluate the robustngss, ssess more accurately the robustness of the proposed tech-
of the proposed techniques to noise. In the following, both thg, 65 against different levels of noise. The data set was ob-
data sets and the carried out experiments are detailed. tained by the procedure described in the following. Animage ac-
quired by the Daedalus 1268 Airborne Thematic Mapper (ATM)

A. Data Set Related to the Island of Elba multispectral scanner [31] was used as the reference image. In

The first of the two data sets used in the experiments caparticular, a section (25& 350 pixels) of a scene acquired in
sisted of two multispectral images acquired by the Landsath agricultural area near the village of Feltwell, U.K., was se-
Thematic Mapper (TM) sensor in the western part of the Islatected (for the sake of simplicity, only band 5 of the ATM was
of Elba in August 1994 and September 1994. The area seleatedsidered). This image was assumed to bethmage of the
for the experiments was a section (44826 pixels) of the two data set (i.e., the image acquired at titpe Thet, image was
scenes acquired by the TM sensor. As an example of the iartificially generated from the reference one. In particular, a first
ages used, Fig. 3(a) and (b) show channel 4 of the August aratsion of the», image was obtained by inserting some changes
September images, respectively. As is readily apparent (seeiththet; image in order to simulate land cover variations. Then
upper left parts of the images), a wildfire destroyed a notaltlee histogram of the resulting image was slightly shifted to sim-
portion of the vegetation in the aforesaid area between the twiate different light conditions in the two images. Finally, five
dates considered. The available ground truth concerning theversions of the; image were generated by adding different re-
cation of the wildfire was used to prepare a “reference map” [salizations of zero-mean Gaussian noise totthienage (the five
Fig. 3(c)] useful to assess change-detection errors. Such a malpes of the SNR used were 10, 5, 2, 1, and 0 dB). For sim-
was refined by a manual analysis of the remote sensing imagésity, we assumed the spatial independence of the noise com-
considered. ponents in the images.

The September image was registered to the August one. Théccording to the previously described procedure, we ob-
analyses of the histograms of both images did not reveal aayned five pairs of images. Each pair was composed ofthe
significant difference in the light conditions at the times of thenage and one of thé, images (characterized by a specific
two acquisitions. Therefore, no correction algorithms were apalue of the SNR). As an example, Fig. 4(a) and (b) show the
plied. The noise affecting the intensity values of the images wasimage and the., image for an SNR= 0 dB, respectively.
reduced by applying a simple running mean filteringX33 The map of the areas with simulated changes is presented in
window size) to both images. Fig. 4(c).
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TABLE |
TRUE VALUES OF THE STATISTICAL TERMS OF THEDIFFERENCEIMAGE AND ESTIMATES PROVIDED BY THE PROPOSEDAPPROACH FORDIFFERENTVALUES OF THE
INITIALIZATION PARAMETER o (DATA SET RELATED TO THE ISLAND OF ELBA)

a Hn %n P(wy) He I Ploy)
0.3 2531 18.44 0.98 109.62 37.22 0.02
Proposed | 0.4 2531 18.44 0.98 109.78 37.17 0.02
0.5 25.31 18.44 0.98 109.63 37.21 0.02

approach
0.6 25.30 18.44 0.98 109.31 37.36 0.02
0.7 25.32 18.46 0.98 110.65 36.83 0.02
True value| - 25.47 18.64 0.98 120.73 30.31 0.02

the assumption of independent pixel values (see Section ll).
In particular, the valug’, of the decision threshold derived by
using the proposed technique was compared with the threshold
value T, that provided the minimum overall change-detection
error. The minimume-error thresholff, was obtained by per-
forming a nonautomatic evaluation of the change-detection er-
rors versus all possible values of the decision threshold. The
comparison was made in terms of both the overall change-de-
tection error and the number of false and missed alarms.

The third experiment made it possible to assess the capability
of the proposed technique that exploits the spatial-contextual
information (see Section IV) to improve the change-detection
accuracies provided by the classical thresholding approach. For
this evaluation, the results yielded by the application of the pre-
sented context-based technigque were compared with the results
obtained by thresholding the difference image with the min-
~n imum error threshold valug,.

(@) (b)

n VI. EXPERIMENTAL RESULTS ON THEDATA SET RELATED TO
THE ISLAND OF ELBA

Preliminary trials were carried out in order to determine the
& most effective spectral bands for detecting the burned area in
»n the considered data set. On the basis of the results of these trials
and in accordance with the literature [32], we applied the CVA
technique to spectral bands 4 and 7 of the images. In fact, such
bands turned out to be very effective in locating the burned area.

(¢}
A. First Experiment: Estimation of the Statistical Terms

Fig.4. Synthetic data set utilized in the experimentst (&nage, (b}, image {hgsociated with the Classes, andw.

(for SNR = 0 dB), (c) map of the areas with simulated changes used as
reference map in the experiments. In order to assess both the accuracy and the stability of the
proposed approach to estimatif@w,, ), P(w.), fin, fte, o2, and
o2, different trials were carried out for different values of the
Three different experiments were carried out to test the viatialization parameterv. In particular, we used values of
lidity of the proposed techniques. ranging from 0.3 to 0.7. The estimates obtained are presented
The first experiment allowed an evaluation of the accurady Table I, in which the true values computed on the reference
and stability of the proposed approach based on the EM algoap are also given to allow a comparison. From the analysis of
rithm for the estimation of the statistical terms involved in (1the table, one can deduce that the proposed technique provided
To this end, the true values of tlaepriori probabilitiesP(w,,) quite accurate estimates of the above statistical terms. In partic-
andP(w.), as well as the means and standard deviations of thiar, despite the estimates of the meanand of the standard
density functiong(X/w,,) andp(X/w.), were computed by deviation,s. are slightly different from the real values, and the
using the information available in the reference maps. Thesstimates of the prior probabilitig3(w,,) andP(w..) as well as
values were then compared with the estimates obtained by these of the mean,, and of the standard deviation, are very
proposed approach. close to the corresponding true values. In addition, it is impor-
The second experiment aimed at assessing the effectivertass to point out the high stability of the estimates versus the
of the technique for the analysis of the difference image undearious values of the initialization parameter This confirms

C. Description of the Experiments
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Fig. 5. Histogram of the difference image corresponding to the data set
related to the Island of Elba. For the sake of comparison, the estimates of the
distributions of both classes,, andw,. obtained by the EM algorithm are
superimposeda = 0.7). The histogram was normalized in order to permit a 12564 ——-—Truevalue
direct comparison with the estimated distributions of the classes. 10 \ } :

o 1 2 3 4 5 &
that the initialization phase is not critical for the proposed ap- No. of iterations of the EM algorithm
proach.

Additional information about the accuracies of the estimates (b)
obtained by the EM algorithm can be derived from the anal-
ysis of Fig. 5, which shows both the histogram of the difference 0,992
image and the density functions of the classgsandw, for fimate
a = 0.7 (the histogram was normalized to allow a direct com- 0,987 = — — True value
parison with the estimated density functions). As can be seen, 0.682 \ ]
the density functions of the classes derived by the EM algorithm | )
resulted in a fairly reasonable approximation of the distribution 0,977
of the difference image. This confirms the effectiveness of the 61 2 3 4 5 6
proposed technique. It is worth noting that a more accurate es- No. of iterations of the EM algorithm
timate of the density function of the clasg could be obtained
with nonparametric or semiparametric mixture density estima- (©)
tion techniques [22], [23]. However, the levels of complexity

inherent in these approaches do not seem to be justified in ﬁlg; 6. Estimates of the statistical terms provided by the proposed approach
t r o = 0.7) versus the number of iterations of the EM algorithm for the class

present case. wn (data set related to the Island of Elba).

A deeper insight into the behavior of the EM algorithm is

made possible by Fig. 6, which presents the trend of each esti-

an

P(Q)n)

2500

mate provided by the proposed technique (foe 0.7) versus ( ‘ \ } I
the number of algorithm iterations for the class. As can be 2000 f — - — Missed alarms
seen, the estimates evolve from wrong initial values to accuraﬁ \ ‘ - - & - -Faise alarms
final ones in only six iterations (similar behaviors were showt & 1500 \ *‘ Overall error
by the estimates of the class). g 1000 ‘ .
. . . i
B. Second Experiment: Analysis of the Difference Image 2 500 .
Under the Assumption of Independent Pixel Values _E;;. -
0 = LLELY - PP TS

In this experiment, the decision threshdigl estimated by
the technique described in Section Ill was compared with th
minimum-error threshold}, derived by a manual trial-and-error
procedure Thanks to the Stab”'ty of the EM algorlthm the eSE| Behaviors of the change-detection errors (overall error, missed alarms,
mates given in Table | for different values resulted in the Sameand false alarms) versus the decision threshold for the data set related to the
value (i.e., 82) of the decision threshdlpl This value was very Island of Elba. The minimum-error threshdld was found for a gray-level
close to the minimum-error threshalg which, in this case, was Va/ue équal to 84.
equal to 84. As a consequence, our technique involved an overall
change-detection error (i.e., 438 pixels) that was very closedecision-threshold value are plotted. The optimum threshold
the minimum one (i.e., 424 pixels). value corresponds to the point at which the curve of the overall

A better understanding of the results obtained can Ieeror reaches the minimum value. As one can see, the decision
gained by the analysis of Fig. 7. In this figure, the trends dfireshold derived with the proposed technique corresponds
the overall error, false alarms, and missed alarms versus thea value on the overall-error curve that is very close to the

65 70 75 80 85 90 95 100 105

Threshold value
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TABLE I
ey o OVERALL ERROR FALSE ALARMS, AND MISSEDALARMS RESULTING FROM
L : THE PROPOSEDCONTEXT-BASED TECHNIQUE FORDIFFERENTVALUES OF THE
S e -
: AR : AL PARAMETER 3 (DATA SET RELATED TO THE ISLAND OF ELBA). FOR THE SAKE
- . ' . ‘ OF COMPARISON, THE TABLE ALSO GIVES THE OVERALL ERROR THE FALSE
ALARMS, AND THE MISSED ALARMS ASSOCIATED WITH THEMINIMUM

ERROR THRESHOLD FOUND BY A NONAUTOMATIC PROCEDUREUNDER
THE ASSUMPTION OFPIXEL INDEPENDENCE

Technique p False alarms | Missed alarms | Overall error
@ ® Pixel
independence - 142 282 424
(threshold To)
Spatial-class 1.6 138 38 176
dependence 1.7 133 40 173
1.8 124 80 204

ﬁ

was significantly more accurate (see Fig. 3(c) for a comparison)
than the one achieved by using the minimume-error threshold
valueT,.

© VII. EXPERIMENTAL RESULTS ON THESYNTHETIC DATA SET

Fig. 8. Change-detection map obtained for the data set related to the IslandThe experiments described in Section VI were repeated on
of Elba by using (a) the proposed technique based on the assumptio . .

independent pixel values, (b) the optimal threshold value provided by a mar?”ié Synthetlc data S_et in order to eva_llu_ate the performances_ of
trial-and-error procedure under the hypothesis of independent pixel values, #i@ presented technigques versus variations in the level of noise.
(c) the proposed technique, which exploits the spatial corftext 1.6). To this end, for the five pairs of synthetic images considered,

the corresponding difference images were obtained by applying

minimum one. Concerning the error typology, the proposéBe CVA technique. For all the trials carried out on this data set,
technique resulted in 218 false alarms and 220 missed alarfi§ initialization parameter was fixed at 0.5. In addition, when
and the minimum overall-error threshold involved 142 fals&€ context-based technique was used, the paramietes set

alarms and 282 missed alarms. 013

The change-detection maps obtained by using the threshold
T, selected by the proposed technique and the minimum-erfor First Experiment: Estimation of the Statistical Terms
thresholdZ,, are shown in Fig. 8(a) and (b), respectively. Mssociated With the Classes andw.

comparison of such maps highlights the ability of our tech- 156 1| shows the results obtained in this experiment for the
nique to generate, in an automatic way, a change-detection ™38 SNR values selected. As one can see, in all the trials, the es-

very similar to the best one that can be achieved by a manﬂmates provided by the proposed technique accurately approx-

trial-and-error procedure. imate the true values of the considered statistical parameters. In
) ) ) ) particular, evenin the cases characterized by high levels of noise
C. Thlrd _Experlm_ent: Analysis of the le_ference Image by (i.e., SNR= 1 dB and SNR= 0 dB), the obtained estimates
Considering Spatial Contextual Information turned out to be very close to the corresponding true values (the
The proposed technigue that takes into account the spal@best error concerns the estimateupffor SNR = 1 dB, for
contextual information in the analysis of the difference imagehich a value of about 168.00 was obtained, instead of the true
was tested by carrying out trials for different values of the paalue of 163.78).
rameters (11). The results obtained are summarized in Table Il. In Fig. 9, the histogram of the difference image is compared
As one can see, for each trial carried out, our technique provideidh the estimates of the density functions of the classes derived
a sharp reduction in the overall change-detection error, as cdmg-the EM algorithm for SNR = 0 dB. As one can see, in spite
pared with the error resulting from the minimume-error thresholof the relative complexity of the problem (the histogram of the
T, (e.g., 176 versus 424 fgr = 1.6). In particular, the numbers difference image does not present two well-separated modes),
of missed and false alarms were significantly reduced. As #me estimates achieved with the proposed technique provide an
example, forg = 1.6, the number of missed alarms decreaseatcurate approximation for the density function of the difference
from 282 to only 38, and the number of false alarms reducédage.
from 142 to 138. This experiment also gives some information about the con-
Fig. 8(c) shows the change-detection map obtained with tliergence capabilities of the EM algorithm. In particular, as one
proposed technique fgr = 1.6. A comparison of Fig. 8(c) with can see in Fig. 10, the number of iterations necessary to reach
Fig. 8(b) confirms that our technique based on the spatial caenvergence increases with the level of noise affecting the im-
text provided, in an automatic way, a change-detection map tlagges. In greater detail, for SNR 10 dB, the algorithm reached
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TABLE Il
TRUE VALUES OF THE STATISTICAL TERMS OF THEDIFFERENCEIMAGES AND ESTIMATES PROVIDED BY THE PROPOSEDAPPROACH FORDIFFERENTSNR VALUES
(SYNTHETIC DATA SET): () QLASS w. PARAMETERS AND (b) CLASS w,, PARAMETERS

P
SNR (dB) He e _ (@)
Estimated True Estimated True Estimated True
10 224.54 224.10 22.77 23.71 0.03 0.03
5 189.54 189.58 25.36 25.61 0.03 0.03
2 166.92 166.50 26.52 27.44 0.03 0.03
1 168.00 163.78 26.16 28.92 0.03 0.03
0 157.75 154.31 27.28 29.43 0.03 0.03
(a)
P
SNR (dB) Hn n (@)
Estimated True Estimated True Estimated True
10 99.06 99.06 12.31 12.31 0.97 0.97
5 85.93 85.94 17.96 17.98 0.97 0.97
2 76.85 76.87 21.99 22.02 0.97 0.97
1 75.68 75.61 24.12 24.05 0.97 0.97
0 71.47 71.40 25.53 25.49 0.97 0.97
(b)
, 30
0,018 P(w,)p(X/®,) 0,003
25
4
Ploy p(Xa,) @ 20 \
2
® 15
2
= 10
] D
0
: ‘ ‘ : ‘ 0 1 2 5 10
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Digital Number

Fig. 10. Number of iterations of the EM algorithm to reach convergence versus
Fig. 9. Histogram of the difference image corresponding to the synthetic daite SNR.
set (SNR = 0 dB). For the sake of comparison, the estimates of the distributions

of both classes,, andw. obtained by the EM algorithm are superimposed. . . .
The histogram was normalized in order to permit a direct comparison with ta&tail, the proposed technique (for SNFO dB) resulted in 839

estimated distributions of the classes. and 101 missed and false alarms, respectively, whereas the min-
imum overall error involved 733 missed alarms and 166 false

convergence in only three iterations, whereas the number ofdtarms.

erations increased up to 26 for SNRO dB. Fig. 11(a) and (b) show the change-detection maps achieved
by using the decision threshdld (selected with the proposed

B. Second Experiment: Analysis of the Difference Image  technique) and the minimum-error threshdilg respectively,

Under the Assumption of Independent Pixel Values for SNR= 0 dB. A comparative analysis of these images points

Thanks to the accuracy of the estimates provided by the pt that, as occurred for the data set related to the Island of Elba,
posed technique in the previous experiment, all the trials carriét® two maps are very similar also for this data set. This confirms
out for the different SNR values considered resulted in a dedhe reliability of the proposed automatic technique.
sion threshold valu@o very close to the corresponding min- ) ) ) )
imum-error threshold’,. In particular, the largest error was in-C- Third Experiment: Analysis of the Difference Image by
curred for SNR= 0 dB, for which the estimated threshold wa&0nsidering Spatial Contextual Information
equal to 144, whereas the minimum-error threshold was foundThe results obtained in this experiment (see Table 1V) point
to be equal to 142. As a consequence, the overall change-detet-the validity of the presented context-based technique. In par-
tion error involved in the proposed technique (i.e., 940 pixel§tular, also on this data set and in all the trials carried out, the
was comparable to the minimum one (i.e., 899 pixels). In greatererall change-detection error was reduced, as compared with



1180

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 38, NO. 3, MAY 2000

TABLE IV

OVERALL ERROR FALSE ALARMS, AND MISSEDALARMS RESULTING FROM THE PROPOSEDCONTEXT-BASED TECHNIQUE FORDIFFERENT SNR VALUES
(SYNTHETIC DATA SET). FOR THE SAKE OF COMPARISON, THE TABLE ALSO GIVES THE OVERALL ERROR THE FALSE ALARMS, AND THE MISSED ALARMS
ASSOCIATED WITH THEMINIMUM -ERROR THRESHOLD FOUND BY A NONAUTOMATIC PROCEDUREUNDER THE ASSUMPTION OFPIXEL INDEPENDENCE

SNR (dB)

Spatial-class dependence

Pixel independence (threshold To)

False
alarms

Missed
alarms

Overall
error

False
alarms

Missed
alarms

Overall
error

—
[—]

0

5

5

1

9

10

9

9

42

95

137

26

29

174

328

502

89

90

154

531

685

S| = | N

| =l WO

152

157

166

733

899

Fig. 11(c) shows the change-detection map resulting from the
application of the proposed context-based technique in the case
of SNR =0 dB. A comparative analysis of Fig. 11(b) and (c) and
Fig. 4(c) confirms the effectiveness of this technique, which pro-
vides a change-detection map that is more accurate and signif-
icantly less noisy than the one achieved for the minimum-error
thresholdT,.

VIIl. CONCLUSIONS

In this paper, two techniques for the analysis of the differ-
ence image in unsupervised change-detection problems have
been proposed. Such techniques, unlike classical ones, perform
an automatic analysis of the difference image by exploiting the-
oretically well-founded methods.

From a methodological viewpoint, the main innovation of this
paper lies in the formulation of the unsupervised change-detec-
tion problem in terms of the Bayesian decision theory. In partic-
ular, we have proposed an iterative technique (based on the EM
algorithm) that allows unsupervised estimations ofahwiori
» probabilities and density functions associated with changed and
unchanged pixels in the difference image. Such estimates make
it possible to apply supervised methods in the context of un-

@ (®)

rS supervised change detection. Within this framework, two auto-
matic techniques for the analysis of the difference image have
N been presented.

The first technique is based on the assumption that the pixels
in the difference image are independent of one another. Under
© this assumption, it allows the automatic selection of the deci-
sion-threshold value that minimizes the overall change-detec-
Fig. 11. Change-detection map obtained for the synthetic data set (SKBN error probability. It is worth noting that, thanks to the avail-
= 0 dB) by using (a) the proposed technique based on the <"‘Ssumptior‘a"qility of the estimates provided by the EM algorithm, other de-
independent pixel values, (b) the optimal threshold value provided by a manual . . .
trial-and-error procedure under the hypothesis of independent pixel values, &haiOn Strategies could also be adopted for the selection of the
(c) the proposed technique that exploits the spatial context. threshold (e.g., the Bayes rule for minimum cost [33], [34]).
The second technique performs the analysis of the differ-
the one incurred when using the corresponding minimum-err@nce image by using an MRF approach that exploits the inter-
threshold?Z’, under the pixel-independence assumption (the rpixel class dependency context in order to improve the accuracy
duction is sharper for an increasing level of noise). For examptd, the final change-detection map. For the sake of simplicity,
for SNR = 0 dB, the overall error made with the context-basedsimple method for the MRF modeling has been used, even
technigue was equal to 157 pixels, whereas the error made ttwwsugh more complex MRF models might be exploited (e.g.,
the minimum error threshold, was found to be equal to 889hierarchical MRF’s [28] and detail-preserving MRF’s [35]). In
pixels. In greater detail, the number of missed alarms decreaseldition, more sophisticated MRF approaches might be adopted
from 733 to 152, and the number of false alarms was reducdedorder to further increase the accuracy and the degree of au-
from 166 to 5. tomation (e.g., automatic selection of the paramgbeof the
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presented technique [36], [37]. Further research should be cofto]
ducted to test the potential improvements associated with such
approaches. [11]

The experimental results reported in this paper confirm the
effectiveness of both presented techniques. Such effectiveneidgl
depends mainly on the accuracy and the stability provided by
the EM algorithm in estimating the statistical terms of the dif-[13]
ference image. Thanks to this accuracy, the decision-threshold
values provided by the proposed technique based on the pix !L-4]
independence assumption turned out to be very close to the
optimum ones for both considered data sets. This resulted in
change-detection maps comparable to those provided by th#]
corresponding minimum-error threshdld. Further improve-
ments in the change-detection accuracies were obtained by the]
proposed method, which exploits spatial-contextual information
in the change-detection process. This method proved very effel’
tive even on images affected by high levels of noise. [18]

As a final remark, it is worth noting that we have formulated
the EM algorithm under the assumption that the conditional den[-lg]
sity functions of classes can be modeled by Gaussian distribu-
tions. In several change-detection applications involving the use
of images acquired by passive sensors, this assumption seem$43
be a reasonable approximation. However, when the number of
different typologies of land cover changes to be identified in{21]
creases or when active sensors are used instead of passive ones,
the Gaussian model might turn out to be inappropriate. In thes?!
cases, more general approaches to the mixture density estima-
tion problem [22], [23], [38] may represent powerful tools in
obtaining accurate estimates of the density functions associatétf
with changed and unchanged pixels.

[24]
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