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Abstract

Various experimental comparisons of algorithms for supervised classi®cation of remote-sensing images have been

reported in the literature. Among others, a comparison of neural and statistical classi®ers has previously been made by

the authors in (Serpico, S.B., Bruzzone, L., Roli, F., 1996. Pattern Recognition Letters 17, 1331±1341). Results of

reported experiments have clearly shown that the superiority of one algorithm over another cannot be claimed. In

addition, they have pointed out that statistical and neural algorithms often require expensive design phases to attain

high classi®cation accuracy. In this paper, the combination of neural and statistical algorithms is proposed as a method

to obtain high accuracy values after much shorter design phases and to improve the accuracy±rejection tradeo� over

those allowed by single algorithms. Ó 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Supervised classi®cation of remote-sensing im-
ages is currently performed by neural and statis-
tical algorithms (Benediktsson et al., 1990; Serpico
and Roli, 1995; Bruzzone et al., 1997; Kanellopo-
ulos et al., 1997; Bruzzone and Serpico, 1997;
Bruzzone and Prieto, 1999). An experimental
comparison of various neural and statistical algo-
rithms was presented by the authors in (Serpico
et al., 1996). Experiments reported by the authors

and other researchers have clearly shown that the
superiority of one algorithm over another cannot
be claimed for remote-sensing image classi®cation.
Performances basically depend on the character-
istics of the images considered and on the e�orts
devoted to the `design phases' of the algorithms
used (i.e., choice of classi®er architectures, tuning
of learning parameters, etc.). For example, the
superiority of the k-nearest neighbour (k-nn)
classi®er over the multilayer perceptron (MLP)
neural network, or vice versa, strongly depends on
the e�orts devoted to the selection of an appro-
priate value of the k parameter for the k-nn clas-
si®er and to the selection of an appropriate
architecture and suitable learning parameters for
the MLP neural network. In our experiments, we
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also noticed that a su�cient level of classi®cation
accuracy may be reached through a reasonable
design e�ort (Serpico and Roli, 1995; Roli, 1996;
Serpico et al., 1996; Bruzzone et al., 1997; Giacinto
and Roli, 1997a; Kanellopoulos et al., 1997).
Further improvements often require an increas-
ingly expensive design phase. Results reported in
(Serpico et al., 1996) pointed out that MLP neural
networks easily reached an accuracy of about 80%
on the selected test set. By contrast, an accuracy
higher than 89% needed a long design phase, in-
volving trials with di�erent architectures and at
di�erent learning rates. This conclusion is in close
agreement with the ones drawn by other re-
searchers (Beyer and Smieja, 1996; Kanellopoulos
et al., 1997).

The above-mentioned experimental analyses
have also pointed out the `complementary' be-
haviours of neural and statistical algorithms in
terms of classi®cation errors. In particular, careful
analyses of the results reported in (Serpico et al.,
1996; Giacinto and Roli, 1997a; Giacinto et al.,
1997b; Kanellopoulos et al., 1997) have shown us
that even neural and statistical algorithms reach-
ing similar overall accuracies made a signi®cant
number of di�erent classi®cation errors.

The above behaviours of neural and statistical
classi®ers can be exploited by use of methods for
combining multiple classi®ers in order to develop
classi®cation systems that may attain high accu-
racies after short design phases. According to our
experimental analyses, neural and statistical clas-
si®ers providing reasonable but not yet high ac-
curacies can be obtained after short design phases,
and, typically, these classi®ers make a su�cient
number of uncorrelated errors. High accuracies
can then be reached by combining such classi®ers.
Several experiments reported in the literature have
shown that the combination of the results yielded
by an ensemble of classi®ers making `uncorrelated'
errors may give a gain in accuracy, as compared
with the accuracies provided by single classi®ers
(Hansen and Salamon, 1990; Xu et al., 1992;
Sharkey, 1996; Giacinto and Roli, 1997a; Giacinto
et al., 1997b).

The uncorrelation of errors could also be ex-
ploited to facilitate the `rejection' of misclassi®ca-
tions. It is reasonable to assume that the errors

made by a multiple classi®er system (MCS) con-
sisting of neural and statistical classi®ers are
characterized by classi®cation `reliabilities' lower
than the ones of individual classi®ers. Therefore,
the accuracy±rejection tradeo� allowed by such an
MCS should be better than those admitted by
single algorithms.

In this paper, the combination of neural and
statistical algorithms is proposed as a method to
obtain high accuracy values after short design
phases and to improve the accuracy±rejection
tradeo� over those allowed by single algorithms.
Short descriptions of methods used to combine
neural and statistical classi®ers are provided in
Section 2. The concept of accuracy±rejection
tradeo� is brie¯y de®ned in Section 3, where we
also propose two measures of `classi®cation en-
tropy' aimed at comparing the `aptitudes' of var-
ious classi®ers to reject errors without rejecting
correct classi®cations. Experimental results ob-
tained on the same data set as used in (Serpico
et al., 1996) are reported and discussed in Section 4.
Conclusions are drawn in Section 5.

2. Methods for combining multiple classi®ers

Three methods previously proposed in the
handwriting recognition ®eld (Xu et al., 1992) were
used to perform the combination of statistical and
neural classi®ers. In the following sections, such
methods are brie¯y summarized with reference to a
classi®cation task for M data classes. Each class is
assumed to represent a set of speci®c patterns,
each pattern being characterized by a feature
vector X . K di�erent classi®cation algorithms are
also assumed to be available to solve the classi®-
cation problem, so that ensembles made up of k
di�erent classi®ers (k � 1::K) may be used.

2.1. Combination by voting principle

Let us consider an MCS made up of k di�erent
classi®ers. Each classi®er provides the results in
terms of the class labels assigned to the patterns. A
given input pattern receives, therefore, k classi®-
cation labels from the MCS, each label corre-
sponding to one of the M data classes. A simple
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method to combine the results of the k classi®ers
lies in interpreting each classi®cation result as a
`vote' for one of the M data classes. The data class
that receives a larger number of votes than a pre-
®xed threshold is taken as the class of the input
pattern. Typically, the threshold is equal to half
the number of the considered classi®ers (`majority'
rule). However, more conservative rules can be
adopted (e.g., the `unison' rule).

2.2. Combination by the Bayesian average

It is well-known that some classi®cation algo-
rithms can provide estimates of the posterior
probabilities that an input pattern X may belong
to the data class xi

P �X 2 xi j X �; i � 1::M : �1�
For example, estimates of the postprobabilities can
be given by MLP neural networks (Richard and
Lippman, 1991; Gish, 1990). Analogously, it is
straightforward for the k-nn classi®er to compute
such estimates (Duda and Hart, 1973). When these
kinds of classi®ers are used, a simple method of
combination lies in the computation of the `aver-
age' posterior probabilities:

Pav�X 2 xi jX � � 1

K

XK

k�1

Pk�X 2 xi jX �; i � 1::M :

�2�
The ®nal classi®cation is performed according
to the Bayesian criterion, that is, the input pattern
X is assigned to the data class for which
Pav�X 2 xi jX � has the maximum value.

2.3. Combination by belief functions

This method exploits the knowledge of the de-
cisions made by the classi®ers forming an MCS on
the training set. Such knowledge is extracted by
the so-called `confusion matrix'. For each classi®er
Ck; k � 1::K, it is quite simple to see that the
confusion matrix computed on the training set can
provide estimates of the following probabilities:

P �X 2 xi jCk�X � � jk�;
i � 1::M ; k � 1::K; jk 2 1;M� �; �3�

where Ck�X � � jk means that the classi®er Ck

assigned the training pattern X to the class jk.
On the basis of the above probabilities, the K

classi®ers can be combined according to the fol-
lowing `belief' functions:

bel�i� � g
YK
k�1

P �X 2 xi jCk�X � � jk�; i � 1::M ;

�4�

where g is a constant that ensures that
PM

i�1 bel�i�
� 1. The ®nal classi®cation is then performed by
assigning the input pattern X to the data class for
which bel(i) has the maximum value.

The reader interested in more details about the
above combination methods is referred to (Xu
et al., 1992).

3. The accuracy±rejection tradeo�

In this section, the concept of accuracy±rejec-
tion tradeo� is brie¯y de®ned (Section 3.1). Sec-
tion 3.2 presents two measures of `classi®cation
entropy' aimed at comparing the `aptitudes' of
certain classi®ers to reject errors without rejecting
correct classi®cations.

3.1. The concept of accuracy±rejection tradeo�

In many pattern-recognition applications, the
accuracy reached by the classi®cation system is
often lower than that requested by the end user. A
common solution to this problem is to `reject', i.e.,
not to classify, the patterns that are the most likely
to be wrongly classi®ed and to handle them by
more sophisticated procedures (typically, a manual
classi®cation process is performed). As an exam-
ple, the accuracy of a thematic map derived from
remote-sensing images can be increased if one en-
trusts the classi®cation of rejected patterns to a
skilled photointerpreter. Classi®cation with a re-
jection option allows one to obtain the desired
accuracy, as potential errors are converted into
rejections. However, handling high rejection rates
is usually too time-consuming for application
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purposes. In addition, correct classi®cations may
also be converted into rejections as the rejection
rate increases. Therefore, a tradeo� between ac-
curacy and rejection is mandatory. The formula-
tion of the best accuracy±rejection tradeo� and the
related optimal rejection rule can be found in
(Chow, 1970). In the following, we brie¯y sum-
marize them.

Let us consider a classi®cation task for M classes
and a classi®cation algorithm that assigns to each
pattern X estimates of posterior probabilities
P �X 2 xi jX � such that

PM
i�1P �X 2 xi jX � � 1:

According to the optimal rejection rule, a pat-
tern X is rejected if

max
i

P �xi jX � < T ; �5�

where T is a threshold dependent on the rejection
rate ®xed by the end user (0 < T < 1). (It is worth
noting that the rejection rate increases when the
threshold increases.) The rationale of the Chow
rejection rule becomes evident if one observes that
maxi P �xi jX � is the conditional probability of
classifying a given pattern X correctly. Therefore,
for a given threshold T and the related rejection
rate, the patterns with the highest probabilities to
be wrongly classi®ed are rejected. A detailed proof
of the optimality of the above rule can be found in
(Battiti and Colla, 1994).

For real pattern-recognition applications, the
designer of the classi®cation system is also inter-
ested in analyzing the di�erent accuracy±rejection
tradeo�s that a certain algorithm can allow. In
addition, the designer often needs to compare the
tradeo�s provided by di�erent algorithms (or
di�erent `versions' of the same algorithm) in order
to select the classi®er most suited to the end-user's
requirements (e.g., the classi®er reaching the
highest accuracy and a rejection rate below a ®xed
threshold). This kind of analysis can be performed
in the so-called accuracy±rejection plane (A±R
plane), introduced by Battiti and Colla (1994). In
the A±R plane, the accuracy±rejection tradeo�s
provided by a given algorithm are described by
the curve A(R) connecting the points that repre-
sent the accuracy values for di�erent rejection
rates.

3.2. Measures of classi®cation entropy for evaluat-
ing the `aptitude' of a classi®er for error rejection

The above-mentioned analysis in the A±R plane
is necessary whenever a detailed evaluation of the
accuracy±rejection tradeo� is requested. In some
cases, a simple evaluation of the `aptitude' of a
classi®er to reject errors without rejecting correct
classi®cations can be su�cient. As an example,
during the design phase, an evaluation of such
aptitude can allow the designer to disregard im-
mediately the algorithms poorly suited to provid-
ing good accuracy±rejection tradeo�s. The
designer can then perform a detailed analysis in
the A±R plane for the most promising algorithms.

In the following, we propose two measures of
classi®cation entropy aimed at comparing the
`aptitudes' of various classi®ers to reject errors
without rejecting correct classi®cations. Such
measures allow the designer to evaluate which
classi®ers are the most likely to provide good
accuracy±rejection tradeo�s.

Given a data set with N patterns, let us assume
that there exists a classi®er that correctly classi®es
Nc patterns and misclassi®es Nw � N ÿ Nc pat-
terns. Let us also assume that such a classi®er
provides estimates of the class posterior probabil-
ities. In order to evaluate the classi®er's aptitude to
reject errors without rejecting correct classi®ca-
tions, we have de®ned the following two measures
of classi®cation entropy:

H �correct classification�

� ÿ 1

Nc

XNc

m�1

XM

j�1

P �xj jX m� ln P�xj jX m�
ÿ �

;

06H 6 ln
1

M
; �6�

H �misclassification�

� ÿ 1

Nw

XNw

m�1

XM

j�1

P �xj jX m� ln P�xj jX m�
ÿ �

;

06H 6 ln
1

M
; �7�

which we have named the `entropy of correct
classi®cation' and the `entropy of misclassi®ca-
tion'.
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It is worth noting that the H (correct classi®-
cation) and the H (misclassi®cation) are computed
on the sets of correctly and wrongly classi®ed
patterns, respectively. Therefore, they characterize
the average degrees of `confusion' in the outputs of
the classi®er for correct and wrong classi®cations.
In particular, the values of such measures are close
to 0 as much as all patterns are classi®ed with
values of maxi P �xi jX � close to 1 (i.e., the classi®er
performs correct or wrong classi®cations to high
degrees of certainty). On the contrary, the above
measures take on values close to ln(1/M) as much
as all patterns are classi®ed with values of
P �xi jX �; i � 1::M , close to 1/M (i.e., the classi®er
performs correct or wrong classi®cations that are
very `confused'). It is easy to deduce that a clas-
si®er involving a value close to zero for the
H (correct classi®cation) and a value close to ln
(1/M) for the H (misclassi®cation) is very apt to
reject errors without rejecting correct classi®ca-
tions, when the Chow rule is applied.

It is worth noting that the above two measures
work better for comparison purposes than for an
`absolute' evaluation of the classi®er's aptitude for
error rejection. In addition, they do not provide
any precise information on the related accuracy±
rejection tradeo�. To this end, an analysis in the
A±R plane must be performed.

4. Experimental results

4.1. Data set description

The data set is the same, as considered in
(Serpico et al., 1996). It consists of multisensor
remote-sensing images related to an agricultural
area near the village of Feltwell (UK). A section
(250� 350 pixels) of a scene acquired by an optical
sensor (an Airborne Thematic Mapper scanner)
and a radar sensor (a NASA/JPL synthetic aper-
ture radar) was selected. Our experiments were
carried out characterizing each pixel by a 15-ele-
ment feature vector containing the brightness
values in six optical bands and over nine radar
channels. We selected 10944 pixels belonging to
®ve agricultural classes (i.e., sugar beets, stubble,
bare soil, potatoes, and carrots) and randomly

subdivided them into a training set (5124 pixels)
and a test set (5820 pixels). A detailed description
of the data set can be found in (Serpico and Roli,
1995).

4.2. Experiment planning

Experiments were performed to attain the fol-
lowing objectives:
· to show that the combination of neural and sta-

tistical classi®ers can be used as a method to ob-
tain high classi®cation accuracies after much
shorter design phases than the ones required
by classi®cation systems based on a single algo-
rithm;

· to show that the combination of neural and sta-
tistical classi®ers may improve the accuracy±re-
jection tradeo� over the tradeo�s provided by
single algorithms.
Concerning the ®rst objective, the design phase

of a classi®cation system based on a single algo-
rithm usually involves `training and testing' dif-
ferent classi®cation algorithms in order to evaluate
the most e�ective for the data set at hand. For
each algorithm, the designer of the classi®cation
system performs a certain number of trials using
di�erent values of the `design parameters' (e.g.,
di�erent learning parameters, di�erent classi®er
architectures, etc.). The number of trials carried
out depends on various factors (e.g. the designerÕs
expertise in the classi®cation task at hand, the time
allocated to the design phase, the computer per-
formances, etc.). In our experiments, a number of
trials aimed at simulating a very long design phase
were performed. Five neural and statistical algo-
rithms were trained and tested on the described
data set, using many values of the related design
parameters (Section 4.3). The purposes of such
experiments were to evaluate the `distribution' of
the accuracies exhibited by the classi®ers generated
during very long design phases and, in particular,
to establish the maximum accuracy value achiev-
able. It is worth noting that the methods com-
monly used by designers of classi®cation systems
were adopted.

In order to quantitatively evaluate the com-
plexity of a given design phase and to compare
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di�erent design phases, we de®ned the following
measure of `design complexity' (DC):

Design complexity � cardfversion spaceg �8�
Such a measure is based on the concept of `version
space' recently proposed by Partridge and Yates
(1996) in the ®eld of MCSs. This space includes the
di�erent `versions' of a classi®cation algorithm
generated during the design phase by varying the
values of the design parameters of the algorithm.
In Eq. (8), we de®ne the cardinality of the version
space as a measure of design complexity. As an
example, the design phase of a MLP neural net-
work was carried out for two di�erent values of
the learning rate, and 10 training trials were made
using di�erent `starting random weights'. The de-
sign phase exhibited a DC value equal to 20, as the
version space contained 20 networks.

4.3. Results and comparisons

Five neural and statistical classi®ers were
trained and tested on the selected data set: a Bayes
classi®er, a k-nn classi®er, an MLP neural net-
work, a Radial Basis Functions (RBF) neural
network, and a Probabilistic Neural Network
(PNN). A long design phase was performed for
each classi®er, except for the Bayes classi®er,
which does not need a design phase, and for the
PNN. For the latter, an a priori ®xed value of the
smoothing parameter equal to 0.1 was selected
(Serpico et al., 1996).

Forty-six trials for di�erent values of the k pa-
rameter, from k � 1 up to k � 91 (by steps equal to
two), were carried out for the k-nn classi®er
(DC� 46). Experiments using ®ve architectures
with one or two hidden layers and various num-
bers of neurons per layer were performed for the
MLP neural network. We considered the same
architectures as previously tested by Serpico et al.
(1996). All the networks had 15 input units and
®ve output units as the numbers of input features
and data classes, respectively (Section 4.1). For
each architecture, 20 trials for di�erent starting
random weights were performed. On the basis of
the experience gained by Serpico et al. (1996), a
value equal to 0.01 was ®xed for the learning rate.
Consequently, the design phase for the MLP

neural network exhibited a DC value equal to one
hundred. For the RBF neural network, the design
phase involved di�erent trials carried out using a
very simple strategy based on the k-means clus-
tering algorithm for de®ning the network archi-
tecture. Thirty-four di�erent values of the
parameter related to the `number of clusters' were
used (DC� 34).

The global DC of the above design phase was
equal to 182, as 182 `versions' of the considered
classi®ers were created. It is worth noting that,
according to the results reported in the literature,
this can be considered a very long design phase.

The performances of the classi®ers generated
during the above design phase are summarized in
Table 1. For each kind of classi®er, they are
characterized by the minimum, mean, and maxi-
mum accuracy values exhibited in the version
space, as suggested in (Lawrence et al., 1997). An
analysis of the distribution of such accuracies led
to conclusions that are in agreement with those
drawn in our previous work: an improvement in
accuracy above a certain level requires a very ex-
pensive design phase. As an example, in (Serpico
et al., 1996), MLP neural networks provided an
accuracy of 89.6% and a DC� 10. Table 1 points
out that an improvement in accuracy of just 0.15%
was obtained for a DC� 100. It should be noted
that, in some cases, classi®ers generated during a
speci®c design phase exhibited a unimodal and
Gaussian-like distribution of accuracies. As an
example, the distribution of the accuracies for the
20 versions of the MLP neural network with a
15±5±5 architecture (i.e., a network with one hidden
layer of ®ve neurons) was of the Gaussian type.
The maximum accuracy value obtained after this
very long design phase (DC� 182) was provided
by the k-nn classi®er for k � 25 (89.80% accuracy).

In order to evaluate the accuracies provided by
the combination of various neural and statistical
classi®ers, we carried out several experiments
(Giacinto et al., 1997a; Giacinto and Roli, 1997a).
In particular, we focused on the evaluation of the
accuracies provided by MCSs made up of three
classi®ers obtained after very short design phases
(i.e., DC� 3). To this end, di�erent ensembles of
three classi®ers were generated by using a priori
®xed values of the related design parameters. All
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the ensembles consisted of one k-nn classi®er and
two MLP neural networks. The results yielded by
two of these MCSs are reported later on. In order
to realistically simulate the accuracies provided by
MCSs designed with DC� 3, we used the follow-
ing approach to choosing the classi®ers forming
such MCSs:
· An a priori ®xed value of the k parameter equal

to the square root of the training set size was
used to design the k-nn classi®er (DC� 1). This
choice of k was in agreement with a rule of
thumb commonly applied by practitioners to
design a k-nn classi®er very quickly.

· We selected three MLP neural-networks archi-
tectures from among the ones considered. For
each architecture, we chose the network that
had exhibited the accuracy closest to the mean
value during the related design phase. This
choice allowed us to realistically simulate the
accuracies provided by MLP neural networks
generated by performing a `unique' trial based
on starting random weights (DC� 1), accord-

ing to the Gaussian-like distributions of accura-
cies pointed out by our experiments.
The three combination methods described in

Section 2 were applied to the above two ensembles.
Table 2 shows the results yielded by such MCSs in
terms of percent classi®cation accuracies and of
Kappa coe�cient values. The performances of the
classi®ers forming the MCSs are also presented for
the sake of comparison. Moreover, in order to
assess the degrees of statistical signi®cance of the
di�erences in accuracy between the MCSs and
the single classi®ers that form them, we computed
the values of the Zeta statistics (see Table 3).

The following conclusions can be drawn from
the results in Tables 2 and 3:
· The combination of statistical and neural classi-

®ers is an e�cient method to obtain high accu-
racies after very short design phases. It is worth
noting that the accuracies of the two MCSs
characterized by DC� 3 are often higher than
the one provided by the best classi®er generated
after a design phase with DC� 182 (see Table 1).

Table 2

The performances of the two MCSs on the test-seta

MCS Single classi®er Majority rule Bayesian average Belief functions

%Accuracy Kappa %Accuracy Kappa %Accuracy Kappa %Accuracy Kappa

MLP (15±30±5) 85.50 0.806 89.96 0.867 89.95 0.867 89.95 0.867

MLP (15±15±5) 87.25 0.830

k-nn �k � 71� 88.40 0.840

MLP (15±30±15±5) 83.35 0.777 89.7 0.863 89.59 0.862 89.64 0.863

MLP (15±15±5) 87.25 0.830

k-nn �k � 71� 88.4 0.847

a The results obtained by the majority-rule, Bayesian-average, and belief-functions combination methods are given in terms of percent

classi®cation accuracies and of Kappa coe�cient values. The performances of the single classi®ers making up the MCSs are also

shown. (For each MLP network, the number of neurons on each layer is given within brackets.)

Table 1

The test-set accuracies exhibited by the classi®ers generated during the design phase are summarizeda

Classi®er Minimum accuracy (%) Mean accuracy (%) Maximum accuracy (%) DC

Bayes 79.37 79.37 79.37 1

k-nn 86.63 88.36 89.80 46

MLP 73.45 81.60 89.75 100

RBF 71.40 78.95 86.51 34

PNN 88.66 88.66 88.66 1

a For each kind of classi®er, the minimum, mean and maximum accuracies are given, as well as the DCs of such phases. The best

performance on the test set is given in italics (k-nn classi®er with k � 25).
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· The combination of a small set of statistical and
neural classi®ers allows one to improve the ac-
curacies of single classi®ers.

· According to the results of the Zeta test, the dif-
ferences in accuracy between the MCSs and the
single classi®ers that form them are very signif-
icant (see Table 3). (We recall that such di�er-
ences exhibit degrees of signi®cance higher
than 95%, if the values of the Zeta statistics

are larger than 1.96, whereas the degrees of sig-
ni®cance are higher than 99%, if the values of
the Zeta statistics exceed 2.58.)
The best classi®er obtained by the design phase

summarized in Table 1 (i.e., the k-nn classi®er with
k � 25) and the above two MCSs were also applied
to the whole image of 250� 350 pixels (Section
4.1). Fig. 1 shows the reference map for this image.
The k-nn classi®er provided an accuracy equal to

Fig. 1. The reference map for the whole image.

Table 3

The values of the Zeta statistics related to the test-set performances are provideda

Zeta statistics Majority rule MCS Bayesian average MCS Belief functions MCS

MLP (15±30±5) 7.62 7.65 7.64

MLP (15±15±5) 4.78 4.80 4.79

k-nn �k � 71� 3.58 3.60 3.59

MLP (15±30±15±5) 10.33 10.22 10.35

MLP (15±15±5) 4.24 4.11 4.24

k-nn �k � 71� 2.11 1.98 2.11

a Such values point out the degrees of signi®cance of the di�erences in accuracy between the MCSs and the single classi®ers that form

them. (For each MLP network, the number of neurons on each layer is given within brackets.)
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87.83% for the whole image. Table 4 gives the
accuracies reached by the two MCSs in terms of
percent classi®cation accuracies and of Kappa
coe�cient values. Table 5 shows the values of the
Zeta statistics related to the degrees of statistical
signi®cance of the di�erences in accuracy between
the MCSs of Table 4 and the single classi®ers that
form them.

Fig. 2(a) shows the classi®cation map of the k-
nn classi®er for the whole image. As an example,
the maps related to the two MCSs based on the
Bayesian average are also presented in Figs. 2(b)
and (c). The classi®cation results obtained for the
whole image con®rmed that the combination of
statistical and neural classi®ers is a suitable
method to obtain high accuracies after short de-
sign phases. The accuracies of the two MCSs were
higher than the one provided by the k-nn classi®er
generated after a design phase with DC� 182. In
addition, according to the results of the Zeta test,
it is worth noting that the di�erences in accuracy

between the MCSs and the single classi®ers that
form them are very signi®cant (Table 5).

The second objective of our experiments was to
show that the combination of neural and statistical
classi®ers may improve the accuracy±rejection
tradeo� over the tradeo�s allowed by single algo-
rithms. To this end, the accuracy±rejection trade-
o�s of the above two MCSs were analyzed. We
used the MCSs based on the Bayesian-average
combination method, as such a method provides
the estimates of postprobabilities, as required by
our two measures of classi®cation entropy and by
the Chow rule.

First of all, our measures of classi®cation en-
tropy were computed for the two MCSs and for
the related classi®ers. Table 6 shows the results
obtained. It is worth noting that the combination
approach allows an increase in entropy of mis-
classi®cation, whereas the entropy of correct clas-
si®cation does not exceed the one of the classi®er
with the maximum entropy value. Therefore, it is

Table 4

The performances of the two MCSs on the whole imagea

MCS Single classi®er Majority rule Bayesian average Belief functions

%Accuracy Kappa %Accuracy Kappa %Accuracy Kappa %Accuracy Kappa

MLP (15±30±5) 88.76 0.856 89.38 0.864 88.93 0.858 89.12 0.86

MLP (15±15±5) 88 0.846

k-nn �k � 71� 85.51 0.814

MLP (15±30±15±5) 88.47 0.852 89.50 0.865 89.26 0.862 89.25 0.862

MLP (15±15±5) 88.00 0.846

k-nn �k � 71� 85.51 0.814

a The results obtained by the majority-rule, Bayesian-average, and belief-functions combination methods are given in terms of percent

classi®cation accuracies and of Kappa coe�cient values. The performances of the single classi®ers making up the MCSs are also

shown. (For each MLP network, the number of neurons on each layer is given within brackets.)

Table 5

The values of the Zeta statistics related to the performances on the whole image are provideda

Zeta statistics Majority rule MCS Bayesian average MCS Belief functions MCS

MLP (15±30±5) 3.34 0.83 1.67

MLP (15±15±5) 7.42 4.92 5.76

k-nn �k � 71� 19.74 17.29 18.13

MLP (15±30±15±5) 4.32 3.32 3.32

MLP (15±15±5) 7.85 6.60 6.60

k-nn �k � 71� 20.19 18.96 18.96

a Such values point out the degrees of signi®cance of the di�erences in accuracy between the MCSs and the single classi®ers that form

them. (For each MLP network, the number of neurons on each layer is given within brackets.)
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reasonable to hypothesize that the combination
method is suited to improving the aptitudes of
single classi®ers to reject errors without rejecting
correct classi®cations. This conclusion was con-
®rmed by the detailed analysis of the accuracy±
rejection tradeo� performed on the A±R plane by

using the Chow rule. Figs. 3 and 4 show the ac-
curacy±rejection tradeo�s on the A±R plane for
the two MCSs in Table 2 and for the related
classi®ers. Except for few values of the rejection
rate, the accuracies of MCSs are always higher
than the ones of single classi®ers. It should be

Fig. 2. (a) Classi®cation map obtained by the k-nn classi®er �k � 25�; (b) classi®cation map provided by the ®rst MCS (based on the

Bayesian average) in Tables 2 and 3; (c) classi®cation map obtained by the second MCS (based on the Bayesian average) in Tables 2

and 3.
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stressed that the accuracies of MCSs are higher for
a range of rejection rates from 0% to 12±14%.
Such a range is usually the most signi®cant for
application purposes. Therefore, we can say that
the combination allows us to improve the accura-
cy±rejection tradeo� over the tradeo�s provided
by single classi®ers.

5. Conclusions

In this paper, we have shown that the combi-
nation of neural and statistical algorithms is an
e�cient method to obtain high accuracy values
after short design phases and to improve the ac-

Fig. 3. The accuracy±rejection tradeo�s of the ®rst MCS in Table 2 are represented on the AR plane for values of the rejection rate

ranging from 0% to 20%. The MCS is based on the Bayesian average combination method. The tradeo�s of the related classi®ers are

also given for the sake of comparison.

Fig. 4. The accuracy-rejection tradeo�s of the second MCS in Table 2 are represented on the A±R plane for values of the rejection rate

ranging from 0% to 20%. The MCS is based on the Bayesian average combination method. The tradeo�s of the related classi®ers are

also given for the sake of comparison.

Table 6

Measures of classi®cation entropy for the two MCSs considered

and for the related classi®ers

MCS H (correct

classi®cation )

H (misclassi®-

cation)

MLP (15±30±5) 0.21 0.48

MLP (15±15±5) 0.32 0.64

k-nn �k � 71� 0.20 0.65

Bayesian average 0.32 0.71

MLP (15±30±15±5) 0.16 0.39

MLP (15±15±5) 0.32 0.64

k-nn (k � 71) 0.20 0.65

Bayesian average 0.32 0.70
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curacy±rejection tradeo� over the tradeo�s pro-
vided by single algorithms. The reported results
have con®rmed and further developed the con-
clusions we drew in (Serpico et al., 1996). In par-
ticular, as compared with our previous work, we
have also demonstrated the e�ectiveness of com-
bination methods to improve the accuracy±rejec-
tion tradeo�. The pattern-recognition application
considered has been remote-sensing image classi-
®cation; however, on the basis of the experiments
we are currently performing, we think that the
conclusions of this paper may also be valid for
other applications, provided that the uncorrelation
of the errors made by neural and statistical clas-
si®ers can be assumed. There remains the problem
of designing a set of classi®ers that make the
largest number of di�erent errors, or of selecting
the most `uncorrelated' classi®ers from a given set
(Sharkey, 1996). Our present research is tackling
this problem (Giacinto and Roli, 1997b; Giacinto
and Roli, 1999).
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