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A Technique for the Selection of Kernel-Function 0,
Parameters in RBF Neural Networks for X
Classification of Remote-Sensing Images
Lorenzo Bruzzone and Diego Fémdez Prieto Fig. 1. Typical architecture of a classifier based on RBF neural networks.

Abstract—n this paper, a supervised technique for training However, the classification error made by RBF neural classifiers

radial basis function (RBF) neural network classifiers is proposed. Strongly depends on the selection of the centers and widths of the
Such a technique, unlike traditional ones, considers the class kernel functions associated with the hidden neurons of the network.

memberships of training samples to select the centers and widths  In this paper, we propose a simple, yet effective, training technique
of the kernel functions associated with the hidden neurons of that, unlike traditional ones, selects the centers and widths of the
an RBF network. The result is twofold: a significant reduction  kernel functions on the basis of the class-membership information
in the overall classification error made by the classifier and a gayailable in the training set. Experimental results obtained on a
more stable behavior of the classification error versus variations ,,itisource remote-sensing data set are reported that show the
in both_the number of hidden units and the initial parameters of effectiveness of the proposed technique.
the training process. : . : . ; . .
The paper is organized into six sections. Section Il provides a
Index Terms—mage analysis, neural networks, pattern analy- brief description of RBF neural classifiers. Section Ill addresses the
sis, remote sensing. main problems associated with the use of traditional techniques for
training the hidden layer of RBF neural classifiers. In Section IV, the
proposed technique is detailed. The data set used for experiments is
| INTRODUCTION described in Section V, where experimental results are also reported.
Since the end of the 1980’s, when the results of first experiencesHimally, conclusions are drawn in Section VI.
the use of neural networks for classification of multisource remote-
sensing data were published [1]-[3], several papers have appeared
that stress the capability of neural networks for analyzing remotely
sensed data. In particular, different models of neural networks havelet us consider a classification problem in which ikte sample,
been proposed, among which, the multilayer perceptron (MLEgscribed by am-dimensional feature vectar; = (a1, -+ -, @n),
trained with the error backpropagation (EBP) learning algorithm i§ to be assigned to one of different land-cover classe® =
the most widely used [4]. The popularity of the MLP stems fronfw1, w2, +++, w.}. In this context, the RBF network architecture for
the ability of this model to generate arbitrary decision boundarigéassification purposes (Fig. 1) consists of three layers: one input
in the feature space, provided that the network architecture religyer, one hidden layer, and one output layer. The input layer relies
on two or more hidden layers [5]. However, MLP'’s exhibit seriou§n as many neurons as input features. Input neurons just propagate
drawbacks and limitations (e.g., the slow convergence of the EBRpUt features to the next layer. Each neuron in the hidden layer
learning algorithm, the potential convergence to a local minimuri§ associated with a kernel functioh;(-) (in this paper we shall
the common chaotic behavior of nonlinear systems, and the inabilkgnsider a Gaussian function), characterized by a centeand a
to detect that a pattern to be classified has fallen into a region of tislth o;. The output layer is composed of as many neurons as classes
input space without training data) [6]. RBF neural networks [7]-[11p be recognized. Each output neugrcomputes a simple weighted
overcome some of these problems by relying on a rapid trainisgmmation over the responses of the hidden neurons for a given
phase, avoiding a chaotic behavior, and presenting systematic liogut patternz;:
responses to input patterns that have fallen into regions of the input .
space where there are no training samples. Such characteristics and or(z:) = Z Wi B (1) + Whine. 1 (1)
=1

IIl. RBF NEURAL NETWORK CLASSIFIERS

the intrinsic simplicity of these networks render RBF neural classifiers

an interesting alternative to classifiers based on other neural models.
wherek is the number of hidden neurons;; represents the weight
Manuscript received May 29, 1998; revised August 10, 1998. This researgbsociated with the connection between the kernel fundtign) and
With“pp‘t’LtEd in part str’] ”t‘r‘? 'taD"a“ StpacetAgferéc_y (ﬁ‘s'_)- | and Electroni€ 0Utput neurom;, andui.. 1 is the bias of the output neuran.
Engir?eei?ng?rsuﬁcaergly Ofe G:ﬁg;’m??m&& 'Ogeﬁs:’ allpaly (ee(fr:gill':c The training of RBF neurallclasgifiers is usuglly carried out in
lore@dibe.unige. it). two steps: 1) the hidden layer is trained by selecting the centers and
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Tthe weights corresponding to the connections between the hiddeaining set, without considering the class-membership information
units and the output units are fixed. about each training sample. Such a clustering process may lead to the
1) Several techniques have been proposed for the selectionggfneration of clusters composed of data points belonging to different
the centers of the kernel functions [10]. Such a selection @asses rfixed clusters). This type of clusters gives rise to kernel
typically performed by applying a clustering technique, likdunctions (mixed kernel functions) that contribute to reducing the
the k-meansclustering algorithm [12], to the whole training Separability of classes in the kernel-function space. Fig. 2 shows a
set, without considering the class-membership informaticimple example in which training patterns belonging to the classes
available. andw- are assigned to three different clustefs; S», andS.,.. As we
Once the centers of the kernel functions have been fixe@ﬁln see, the kernel fUnCti(ﬁﬂm(') associated with thenixedcluster
the selection of the widths of such functions is carried ouf leads to a nonseparable situation in which patterns belonging
The width values control the generalization capabilities of th@ different classes may be represented by the same vectors in the
network [9]. The width of a given kernel function can bekernel function space. This can be explained if we consider that the
chosen as the standard deviation computed over all trainifgntery — of the mixedcluster S, represents a prototype for the
samples included in the cluster associated with the kerri&ining samples located in the surroundingg.of [10], irrespective
function considered. However, this strategy may lead to ti@ their class-memberships. As a consequence, the corresponding
generation of narrow not overlapping kernel functions thdbixedkernel®,,(-) may generate identical responses to input patterns
affect the generalization ability of the network. A widely usedelonging to different classes located in the surroundingg: of
alternative lies in the use of thp-nearest-neighboip-nn) Therefore, the kernel functio®..(-) may reduce the separability
technique [9], which generates a certain overlapping of tH¥ classes in the kernel function space, thus affecting the overall
kernel functions, thus improving the generalization capabilitiedassification error made by the neural network classifier.
of the classifier. A further problem associated with the use of classical techniques
2) In the final stage of the training process, the weights corrfar selecting the centers of the kernel functions of RBF classifiers is
sponding to the connections between the hidden nodes and @ unstable behavior of the classification error made by the classifier,
output units are fixed. This is typically done by minimizing sdepending on both the number of hidden units and the initial selection
sum-of-squaresrror function [10]. As asum-of-squaregrror  Of the cluster centers. One of the causes of this oscillatory behavior
function is a quadratic function of the weights, its minimunis the random number ohixedclusters that are generated when we
can be found in terms of the solution of a set of linear equatioh’gry either the number of hidden units or the initial cluster centers.
given by a pseudo-inverse matrix [10]. This represents one 9fall variations in these parameters may lead to different solutions
the major advantages of RBF neural networks as it avoids tRé& the clustering process (i.e., different numberstoked clusters),
need for a nonlinear optimization of the weights, which woulghus causing large variations in the classification errors made by
require a high computational load. RBF neural classifiers. These two problems make it very critical
In this training process, an efficient selection of the centers alfy select the initial architecture of the network and to initialize the

widths of the kernel functions associated with the hidden neuroff@ining process.
of the network is still an open issue in literature as this choice may _ _
strongly affect the errors made by the classifier. This problem B. Overlapping of the Kernel Functions

addressed in the following section. As stated in Section Il, thp-nn technique is the most widely used

for the selection of kernel-function widths. Such a technique, which
allows some overlapping of kernel functions, aims at increasing the
generalization capabilities of the network. However, the overlapping
of the kernel functions associated with different classes reduces the

Kernel functions can be considered as processing elements thgparability of such classes in the regions of the kernel-function
carry out a nonlinear transformation of thedimensional input space space corresponding to the overlapping areas; as a consequence, the
so as to increase the range of possible decision boundaries tiassification errors on samples located in these areas increase. This
separate different classes in the kernel-function space. Consequemitynts out that the-nn is not a suitable criterion for the selection of
an RBF neural classifier can be represented as a simpler network vifitt widths of kernel functions located in boundary regions between
as many input neurons as kernel functions and as many output neurclasses.
as land-cover classes. As the output neurons of the network are
characte_rized by a linear discriminant function (i.e.,_ a simple weighted IV. DESCRIPTION OF THEPROPOSEDTECHNIQUE
summation over the responses of the kernel functions), they generate
linear decision boundaries (i.e., hyperplans) in the kernel-function The basic idea of the proposed technique is to carry out the training
space. Therefore, the performances of RBF neural classifiers stror@gfigcess of the hidden layer of RBF neural classifiers by taking into
depend on the linear separability of classes intttmensional space account the class-memberships of the training samples. In particular,
generated by the nonlinear transformations carried out by thieden clusters are generated by grouping training samples belonging to the
units (i.e., kernel functions) of the network. same class in order to avoid the creationmakedclusters. Moreover,

Two main factors affect the separability of classes in the kerndhe widths of the kernel functions are selected by using a supervised
function space: the presence ofixed kernel functions and the procedure aimed at Ilmltlng the widths of kernels located in boundary
overlapping of kernel functions associated with different classes. @gions between classes while maintaining, at the same time, a certain
the following, both problems are faced. overlapping inside the internal regions of each class. In the following,
a detailed description of the proposed technique is provided.

Let us assume the availability of a training sét = {m U
72 U--- U7}, wherer; represents a subset @ containing all

Traditional techniques for selecting the centers of the kernghining samplest,;’ (j = 1, ---, N;) belonging to the class;.
functions make use of clustering techniques applied to the whdlbe proposed technique is subdivided into two sequential phases:

Ill. ON THE SELECTION OF THE
KERNEL-FUNCTION PARAMETERS

A. Mixed Kernel Functions
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Fig. 2. Simple example, in which some training samples [in a two-dimensional (2-D) space] belonging to the.classgkv, (0 = classwy, A =
classwy) are assigned to three different clustéis, S and Sy,. (a) Representation of the three clusters in the input spége ié a mixedcluster). (b)
Kernel functions generated by the considered clusters. (c) Representation of the training samples in the kernel function spacd Keeel &.,, (i.e.,
the kernel function generated b¥,,) leads to nonlinearly separable situations.

computation of the kernel-function centers and computation of the the algorithm finds a local minimum of
kernel-function widths.
K 2
A. Computation of the Kernel-Function Centers Ei=> > Hg, - H; 2)
This phase aims at partitioning tHé training samples belonging =laites;
to r; into K; disjoint subsets (i.e., cIusterS)j (¢=1,---, K;) so ' ,
that at the end of the process= {Si U SiU---USk } V= C T. Then, the centep’ of each clusterS, is updated by

computing the baﬁycenter of the cluster. The procedure
is iterated until convergence is reached [12]. At the end
of the clustering process, all training samples included
in 7; turn out to be assigned to different clusters so that

Such a task is carried out by the following algorithm.
Step 1) Leti = 1.
Step 2) For the class;, the number of centerd(; is chosen

according to both the number of training samp}sand 7 = {Si U S .U Si }. At this point, each cluster
. . . r = 1 2 K;
the dimension of th.e Input s.pace. _ centeru is assouated with a kernel functialy, ().
Step 3) Thek-meansclusterlng algorithm is applied to the sub-  gtep 4) Update =i+1.If i < c go to Step 1). Otherwise, END.
set ;. The centers;/ of the clustersS, C 7i(q = The above-described procedure generatesubsets of kernel
L, Ki)are initialized with different randomly chosenfnctions that can be associated with specific land cover classes.

tra|n|ng samples belonging te;. Then each training Thjs results in the elimination of theixedclusters and hence in a
sample belonging to; is assigned to the cluster nearespetter separability of classes in the kernel function space. In addition,
to it so that the sum of the Euclidean quadratic distancéise elimination ofmixed kernel functions results in a more stable
between the training points assigned to each cluster ao@ssification error versus variations in both the number of hidden
the related cluster center is minimized. This means thaturons of the network and the initialization of the cluster centers.
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@) (b)
Fig. 3. Multisensor image utilized for the experiments: (a) channel 9 of the ATM sensor; (b) cHahiMl(L-band, HV-polarization) of the SAR sensor.

It is worth noting that, even though the proposed technique hagricultural area near Feltwell, U.K. [13]. Fig. 3 shows channel 9 of
been described in terms of tHemeansclustering algorithm, the the ATM sensor and channétHV (L-band, HV-polarization) of the
basic idea of the proposed approach could also be applied in &R sensor. Images were registered by using the SAR image as a
contexts of other clustering procedures (e.g., Ig@ataclustering reference. The available ground truth was used to prepare a reference
algorithm [12]). map to assess the classification error. We considered five land cover

classes corresponding to five types of crops. The agricultural fields
B. Computation of the Kernel-Function Widths were randomly subdividet_j into two disjoint sets: 5124 trainipg pixels
) ) ) were selected from the fields of one set and 5820 test pixels were

The widths of the kernel functions are computed in accordancedQen from the fields of the other set. Fifteen channels were selected
a hybrid criterion. The widtlr; of the kernel functionb, (-) (refated 5 form a feature vector for each pixel: we selected the six ATM
to the class.;) is computed with thep-nn technique only if®;(-)  channels corresponding to TM channels in the visible and infrared
is surrounded by} kernel functions associated with the class  gpectrum (except the thermal band) and the nine SAR channels in
(i.e., if the M cluster centers clqsest to the cen;;é;r belong to the the PLC-band and HH-, HV-, VV-polarizations. The noise affecting
classw;). Otherwise, the widthr; is set to the standard deviationthe intensity values of the images was reduced by applying a simple
computed over all training samples belonging to the cluSterThis  running mean filtering to both the ATM (% 5 window) and the
criterion aims at increasing generalization in the internal regions 8AR (9 x 9 window) images.
each class (thanks to a certain overlapping of the kernel functions
related to the same class). At the same time, it limits errors due
to the overlapping of the kernel functions (associated with differef. Results and Discussion

classes) located in the boundary regions between classes (thanks tfo evaluate the effectiveness of the proposed training technique,
the narrower kernel functions resulting from choosing the widths @gree different experiments were carried out. In these experiments, the

the standard deviation). proposed technique was compared with the classical one in terms of
classification accuracy, stability, and processing time. As suggested
V. EXPERIMENTAL RESULTS in the literature [9], the classical approach was implemented by using

the k-meansclustering algorithm (based on the Euclidean distance)
. and thep-nn criterion (withp equal to two). Concerning the proposed
A. Data Set Description algorithm, parameterg and M were taken equal to two and three,
To carry out an experimental analysis to validate the proposesspectively.
technique, we considered a multisource data set composed of imagebhe first experiment compared the overall classification errors
acquired in the same area by two different types of airborne sensor¢versus the number of hidden units) made by the RBF classifier
Daedalus 1268 airborne thematic mapper (ATM) scanner and a PlWhen using the proposed and the classical training techniques. Several
band, fully polarimetric, NASA/JPL SAR sensor. The selected datdals were carried out, increasing the number of hidden neurons (and
set refers to a section (250 350 pixels) of a scene acquired in anhence the number of kernel functions) from 15 to 100 (by steps
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25 ) TABLE |
LT \ SramisTics (MEAN AND STANDARD DEVIATION) COMPUTED FOR THE
o CLASSIFICATION ERRORSMADE IN 15 TRIALS CARRIED OUT ON THE
20 A TesT ST BY USING THE RBF NEURAL CLASSIFIER TRAINED WITH

V=

BOTH THE PROPOSED AND THECLASSICAL TECHNIQUES. TO CARRY
OUT THE TRIALS, THE NUMBER OF HIDDEN UNITS WAS SET TO 50

-
,‘ii

Classification error

Overall classification error (%)

i /4 v La;:;:g:cr Classical training technique Proposed training technique
10 T H i ' Mean St. deviation Mecan St. deviation
;” L ; [ ! ! - Sugar beets 1.8% 1.97 . 07% ] 143
‘ | : —— Proposed technique Stubble 19.6% 3.78 13.0% 429
5 - — Bare soil 3% 16.91 17.1% 101
‘ i o Classical technique Potatocs 26.0% 6.53 23.7% 084
! ! ! ; ‘ : ! g e Carrots 20.6% 6.19 13.6% 0.25
[0 N SO S TS B R A J P Overall 164% 219 10.8% 081
15 25 35 45 55 65 75 85 95
Number of hidden units
TABLE 1l

Fig. 4. Classification errors made on the test set by the RBF neural classifiEiE SMALLEST ERRORS ON THECLASSIFICATIONS OF TEST PIXELS PERFORMED

trained by using both the classical and the proposed techniques versus the
number of hidden units.

BY THE RBF NEURAL CLASSIFIER TRAINED WITH THE PROPOSED
TECHNIQUE (P.T.)AND THE CLAssICAL TECHNIQUE (C.T.), AND BY THE

MLP CLAsSIFIER, THE PNN QLASSIFIER, AND THE K-nn QLASSIFIER

. . . Land-cover | Number of RBF RBF MLP PNN k-nn
equal to five). For the sake of simplicity, an equal number of kernel __ctasses pixcls (.T) (C.T.)

. : : . -1~ Sugar beets 2043 0.4% 2.0% 2.0% 2.2% 2.6%
functions for each clfiss was chosen in all qf the_ trials carrnled out with>g e &7 ER e RT VS Ry D Tt
the proposed technique. Results, shown in Fig. 4, confirm that the Bare soil 555 15.4% 17.8% 19.1% 204% 24.0%

. . e e . Potatoes 884 15.4% 32.8% 19.1% 18.2% 13.6%
presented technique significantly reduces the classification error made ;o6 567 8% 8 0% T5% 079 5%
by the RBF neural classifier. In particular, the lowest classification __Overall 5820 9.5% 13.5% 10.4% 11.4% 10.2%

error made by using the classical technique was equal to 13.5% (with
90 hidden units), whereas the minimum classification error made with
the proposed technique decreased to 9.5% (with 35 hidden units)thg best results obtained by the different classifiers in terms of the
addition, Fig. 4 points out that the classification error made with tifdassification error on the test set. As we can see, even though the
classical technique follows an oscillatory behavior with regard to tidassification error made by the RBF classifier trained by using the
number of hidden neurons considered. On the contrary, the propoBé@Posed technique (i.e., 9.5%) is similar to those made by using
technique results in a more stable trend of the classification errte #-nn (i.e., 10.2%) and the MLP (i.e., 10.4%) classifiers, it is the
thus providing a better framework for choosing the architecture §fwest one. This highlights that the proposed technique makes RBF
the network. classifiers a valid alternative to the nonparametric classifiers widely
The second experiment showed the stability of the overall cla4sed in remote-sensing applications.
sification error made by the RBF neural classifier trained by using From the point of view of the processing time, the proposed
both the proposed and the classical techniques, despite the randiGHRing technique proved slightly faster than the classical one. In
initialization of the cluster centers. Fifteen trials were carried of@rticular, in the experiments carried out, the training time was
changing, in a random manner, the initial cluster centers for a givegfuced by about 15%. This reduction in the training time was
number of kernel functions. For this experiment, the number of kerrfdpt@ined by the simplification of the clustering problem associated
functions was fixed at 50 (i.e., ten per class when using the propo¥él" the presented technique. - ) _
technique). Table | gives the class by class means and standardl) Comparison with the other classifiers used in the experiments,
deviations of the classification errors computed for the 15 tria}3€ Proposed technique required a much smaller training time than the
carried out using both the proposed and the classical techniques. F and SNN_ (_:Iassmers, whereas it proved slower than the PNN
this table, it is easy to deduce that the proposed technique, besiﬁ@g k-nn classifiers.
reducing the overall classification error, also shows a more stable
behavior versus the random initialization of the cluster centers. In
particular, the overall classification error made by the RBF classifier VI. CONCLUSIONS
trained with the classical training technique was found to vary from In this paper, we have presented a simple supervised technique
13.5 to 20.2%, the mean and the standard deviation being equafdptraining the hidden layer of RBF neural network classifiers. The
16.4% and 2.19, respectively. The overall classification error magemposed technique, unlike traditional ones, selects the centers and
by the classifier trained by using the proposed technique was founttiths of the kernel functions associated with the hidden neurons of
to range from 9.7 to 12.0%, the mean and the standard deviatitwe network by taking into account the class-membership information
being equal to 10.8% and 0.81, respectively. Table | also shows tleéittraining samples. In particular, such a technique avoids the
the proposed technique results in a more balanced classification eg@neration oimixedkernel functions. In addition, it tunes the kernel
on the classes, thanks to the better class descriptions provided byftietion widths to limit the overlapping in boundary regions between
kernel functions. different classes, while maintaining a certain overlapping inside
The third experiment compared the overall classification erréch class. The proposed technique has significant advantages over
of the RBF classifier trained by using both the proposed and tk@ditional techniques:
classical techniques with the errors made by an MLP, a probabilistic1) increases the separability of classes in the kernel-function space
neural network (PNN) and &-nearest neighboik¢nn) nonparametric and hence contributes to reducing the classification error made
classifiers [13]. The phase of the architecture design and the trials by the classifier;
carried out using the above-mentioned classifiers on the same data) reduces the oscillatory behavior of the classification error
set, as considered in this paper, are described in [13]. Table Il shows made by the network versus the number of hidden units,
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thus providing a better framework for defining the network[3] J. A. Benediktsson, P. H. Swain, and O. K. Ersoy, “Neural network

architecture;

3) improves the stability of the classification error of the network
versus the random initialization of the kernel centers durin

the training process.

As a final remark, it is worth noting that, when the classes present
a high degree of overlapping in the input space, the complexity of
the classification problem may limit the capabilities of the proposedl5
technique to reduce the overlapping of the kernel functions associat
with the different classes. However, even in these extreme cases, the

presented method prevents the generatiomiskedclusters, whereas

classical techniques would generate a large number of overlappiig]
mixed clusters, which would strongly affect both the classification

capability and the stability of the network.
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