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A Technique for the Selection of Kernel-Function
Parameters in RBF Neural Networks for
Classification of Remote-Sensing Images
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Abstract—In this paper, a supervised technique for training
radial basis function (RBF) neural network classifiers is proposed.
Such a technique, unlike traditional ones, considers the class
memberships of training samples to select the centers and widths
of the kernel functions associated with the hidden neurons of
an RBF network. The result is twofold: a significant reduction
in the overall classification error made by the classifier and a
more stable behavior of the classification error versus variations
in both the number of hidden units and the initial parameters of
the training process.

Index Terms—Image analysis, neural networks, pattern analy-
sis, remote sensing.

I. INTRODUCTION

Since the end of the 1980’s, when the results of first experiences in
the use of neural networks for classification of multisource remote-
sensing data were published [1]–[3], several papers have appeared
that stress the capability of neural networks for analyzing remotely
sensed data. In particular, different models of neural networks have
been proposed, among which, the multilayer perceptron (MLP)
trained with the error backpropagation (EBP) learning algorithm is
the most widely used [4]. The popularity of the MLP stems from
the ability of this model to generate arbitrary decision boundaries
in the feature space, provided that the network architecture relies
on two or more hidden layers [5]. However, MLP’s exhibit serious
drawbacks and limitations (e.g., the slow convergence of the EBP
learning algorithm, the potential convergence to a local minimum,
the common chaotic behavior of nonlinear systems, and the inability
to detect that a pattern to be classified has fallen into a region of the
input space without training data) [6]. RBF neural networks [7]–[11]
overcome some of these problems by relying on a rapid training
phase, avoiding a chaotic behavior, and presenting systematic low
responses to input patterns that have fallen into regions of the input
space where there are no training samples. Such characteristics and
the intrinsic simplicity of these networks render RBF neural classifiers
an interesting alternative to classifiers based on other neural models.
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Fig. 1. Typical architecture of a classifier based on RBF neural networks.

However, the classification error made by RBF neural classifiers
strongly depends on the selection of the centers and widths of the
kernel functions associated with the hidden neurons of the network.

In this paper, we propose a simple, yet effective, training technique
that, unlike traditional ones, selects the centers and widths of the
kernel functions on the basis of the class-membership information
available in the training set. Experimental results obtained on a
multisource remote-sensing data set are reported that show the
effectiveness of the proposed technique.

The paper is organized into six sections. Section II provides a
brief description of RBF neural classifiers. Section III addresses the
main problems associated with the use of traditional techniques for
training the hidden layer of RBF neural classifiers. In Section IV, the
proposed technique is detailed. The data set used for experiments is
described in Section V, where experimental results are also reported.
Finally, conclusions are drawn in Section VI.

II. RBF NEURAL NETWORK CLASSIFIERS

Let us consider a classification problem in which theith sample,
described by ann-dimensional feature vectorxi = (x1; � � � ; xn),
is to be assigned to one ofc different land-cover classes
 =
f!1; !2; � � � ; !cg. In this context, the RBF network architecture for
classification purposes (Fig. 1) consists of three layers: one input
layer, one hidden layer, and one output layer. The input layer relies
on as many neurons as input features. Input neurons just propagate
input features to the next layer. Each neuron in the hidden layer
is associated with a kernel function�j(�) (in this paper we shall
consider a Gaussian function), characterized by a center�

j
and a

width �j . The output layer is composed of as many neurons as classes
to be recognized. Each output neuronol computes a simple weighted
summation over the responses of the hidden neurons for a given
input patternxi:

ol(xi) =

k

j=1

wlj�j(xi) + wbias; l (1)

wherek is the number of hidden neurons,wlj represents the weight
associated with the connection between the kernel function�j(�) and
the output neuronol, andwbias; l is the bias of the output neuronol.

The training of RBF neural classifiers is usually carried out in
two steps: 1) the hidden layer is trained by selecting the centers and
widths of the kernel functions associated with the hidden units; 2)
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Tthe weights corresponding to the connections between the hidden
units and the output units are fixed.

1) Several techniques have been proposed for the selection of
the centers of the kernel functions [10]. Such a selection is
typically performed by applying a clustering technique, like
the k-meansclustering algorithm [12], to the whole training
set, without considering the class-membership information
available.

Once the centers of the kernel functions have been fixed,
the selection of the widths of such functions is carried out.
The width values control the generalization capabilities of the
network [9]. The width of a given kernel function can be
chosen as the standard deviation computed over all training
samples included in the cluster associated with the kernel
function considered. However, this strategy may lead to the
generation of narrow not overlapping kernel functions that
affect the generalization ability of the network. A widely used
alternative lies in the use of thep-nearest-neighbor(p-nn)
technique [9], which generates a certain overlapping of the
kernel functions, thus improving the generalization capabilities
of the classifier.

2) In the final stage of the training process, the weights corre-
sponding to the connections between the hidden nodes and the
output units are fixed. This is typically done by minimizing a
sum-of-squareserror function [10]. As asum-of-squareserror
function is a quadratic function of the weights, its minimum
can be found in terms of the solution of a set of linear equations
given by a pseudo-inverse matrix [10]. This represents one of
the major advantages of RBF neural networks as it avoids the
need for a nonlinear optimization of the weights, which would
require a high computational load.

In this training process, an efficient selection of the centers and
widths of the kernel functions associated with the hidden neurons
of the network is still an open issue in literature as this choice may
strongly affect the errors made by the classifier. This problem is
addressed in the following section.

III. ON THE SELECTION OF THE

KERNEL-FUNCTION PARAMETERS

Kernel functions can be considered as processing elements that
carry out a nonlinear transformation of then-dimensional input space
so as to increase the range of possible decision boundaries that
separate different classes in the kernel-function space. Consequently,
an RBF neural classifier can be represented as a simpler network with
as many input neurons as kernel functions and as many output neurons
as land-cover classes. As the output neurons of the network are
characterized by a linear discriminant function (i.e., a simple weighted
summation over the responses of the kernel functions), they generate
linear decision boundaries (i.e., hyperplans) in the kernel-function
space. Therefore, the performances of RBF neural classifiers strongly
depend on the linear separability of classes in thek-dimensional space
generated by the nonlinear transformations carried out by thek hidden
units (i.e., kernel functions) of the network.

Two main factors affect the separability of classes in the kernel-
function space: the presence ofmixed kernel functions and the
overlapping of kernel functions associated with different classes. In
the following, both problems are faced.

A. Mixed Kernel Functions

Traditional techniques for selecting the centers of the kernel
functions make use of clustering techniques applied to the whole

training set, without considering the class-membership information
about each training sample. Such a clustering process may lead to the
generation of clusters composed of data points belonging to different
classes (mixed clusters). This type of clusters gives rise to kernel
functions (mixed kernel functions) that contribute to reducing the
separability of classes in the kernel-function space. Fig. 2 shows a
simple example in which training patterns belonging to the classes!1
and!2 are assigned to three different clusters:S1; S2; andSm. As we
can see, the kernel function�m(�) associated with themixedcluster
Sm leads to a nonseparable situation in which patterns belonging
to different classes may be represented by the same vectors in the
kernel function space. This can be explained if we consider that the
center�

m

of the mixed clusterSm represents a prototype for the
training samples located in the surroundings of�

m

[10], irrespective
of their class-memberships. As a consequence, the corresponding
mixedkernel�m(�) may generate identical responses to input patterns
belonging to different classes located in the surroundings of�

m

.
Therefore, the kernel function�m(�) may reduce the separability
of classes in the kernel function space, thus affecting the overall
classification error made by the neural network classifier.

A further problem associated with the use of classical techniques
for selecting the centers of the kernel functions of RBF classifiers is
the unstable behavior of the classification error made by the classifier,
depending on both the number of hidden units and the initial selection
of the cluster centers. One of the causes of this oscillatory behavior
is the random number ofmixedclusters that are generated when we
vary either the number of hidden units or the initial cluster centers.
Small variations in these parameters may lead to different solutions
of the clustering process (i.e., different numbers ofmixedclusters),
thus causing large variations in the classification errors made by
RBF neural classifiers. These two problems make it very critical
to select the initial architecture of the network and to initialize the
training process.

B. Overlapping of the Kernel Functions

As stated in Section II, thep-nn technique is the most widely used
for the selection of kernel-function widths. Such a technique, which
allows some overlapping of kernel functions, aims at increasing the
generalization capabilities of the network. However, the overlapping
of the kernel functions associated with different classes reduces the
separability of such classes in the regions of the kernel-function
space corresponding to the overlapping areas; as a consequence, the
classification errors on samples located in these areas increase. This
points out that thep-nn is not a suitable criterion for the selection of
the widths of kernel functions located in boundary regions between
classes.

IV. DESCRIPTION OF THEPROPOSEDTECHNIQUE

The basic idea of the proposed technique is to carry out the training
process of the hidden layer of RBF neural classifiers by taking into
account the class-memberships of the training samples. In particular,
clusters are generated by grouping training samples belonging to the
same class in order to avoid the creation ofmixedclusters. Moreover,
the widths of the kernel functions are selected by using a supervised
procedure aimed at limiting the widths of kernels located in boundary
regions between classes while maintaining, at the same time, a certain
overlapping inside the internal regions of each class. In the following,
a detailed description of the proposed technique is provided.

Let us assume the availability of a training setT = f�1 [
�2 [ � � � [ �cg, where �i represents a subset ofT containing all
training samplesx j

i (j = 1; � � � ; Ni) belonging to the class!i.
The proposed technique is subdivided into two sequential phases:
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(a) (b)

(c)

Fig. 2. Simple example, in which some training samples [in a two-dimensional (2-D) space] belonging to the classes!1 and !2 (o = class!1; � =

class!2) are assigned to three different clustersS1; S2 andSm. (a) Representation of the three clusters in the input space (Sm is a mixed cluster). (b)
Kernel functions generated by the considered clusters. (c) Representation of the training samples in the kernel function space. Themixedkernel�m (i.e.,
the kernel function generated bySm) leads to nonlinearly separable situations.

computation of the kernel-function centers and computation of the
kernel-function widths.

A. Computation of the Kernel-Function Centers

This phase aims at partitioning theNi training samples belonging
to �i into Ki disjoint subsets (i.e., clusters)Siq (q = 1; � � � ; Ki) so
that at the end of the process�i = fSi1 [Si2 [ � � � [SiK g 8 �i � T .
Such a task is carried out by the following algorithm.

Step 1) Leti = 1.
Step 2) For the class!i, the number of centersKi is chosen

according to both the number of training samplesNi and
the dimension of the input spacen.

Step 3) Thek-meansclustering algorithm is applied to the sub-
set �i. The centers�i

q
of the clustersSiq � �i (q =

1; � � � ; Ki) are initialized with different randomly chosen
training samples belonging to�i. Then each training
sample belonging to�i is assigned to the cluster nearest
to it so that the sum of the Euclidean quadratic distances
between the training points assigned to each cluster and
the related cluster center is minimized. This means that

the algorithm finds a local minimum of

Ei =

K

q=1 x 2S

xj
i � �

i

q

2

: (2)

Then, the center�i
q

of each clusterSiq is updated by
computing the barycenter of the cluster. The procedure
is iterated until convergence is reached [12]. At the end
of the clustering process, all training samples included
in �i turn out to be assigned to different clusters so that
�i = fSi1 [ Si2 [ � � � [ SiK g. At this point, each cluster
center�i

q
is associated with a kernel function�iq(�).

Step 4) Updatei = i+1. If i � c go to Step 1). Otherwise, END.

The above-described procedure generatesc subsets of kernel
functions that can be associated with specific land cover classes.
This results in the elimination of themixedclusters and hence in a
better separability of classes in the kernel function space. In addition,
the elimination ofmixed kernel functions results in a more stable
classification error versus variations in both the number of hidden
neurons of the network and the initialization of the cluster centers.
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(a) (b)

Fig. 3. Multisensor image utilized for the experiments: (a) channel 9 of the ATM sensor; (b) channelL-HV (L-band, HV-polarization) of the SAR sensor.

It is worth noting that, even though the proposed technique has
been described in terms of thek-meansclustering algorithm, the
basic idea of the proposed approach could also be applied in the
contexts of other clustering procedures (e.g., theIsodata clustering
algorithm [12]).

B. Computation of the Kernel-Function Widths

The widths of the kernel functions are computed in accordance to
a hybrid criterion. The width�i

q of the kernel function�i
q(�) (related

to the class!i) is computed with thep-nn technique only if�i
q(�)

is surrounded byM kernel functions associated with the class!i

(i.e., if theM cluster centers closest to the center�i

q
belong to the

class!i). Otherwise, the width�i
q is set to the standard deviation

computed over all training samples belonging to the clusterSi
q. This

criterion aims at increasing generalization in the internal regions of
each class (thanks to a certain overlapping of the kernel functions
related to the same class). At the same time, it limits errors due
to the overlapping of the kernel functions (associated with different
classes) located in the boundary regions between classes (thanks to
the narrower kernel functions resulting from choosing the widths as
the standard deviation).

V. EXPERIMENTAL RESULTS

A. Data Set Description

To carry out an experimental analysis to validate the proposed
technique, we considered a multisource data set composed of images
acquired in the same area by two different types of airborne sensors: a
Daedalus 1268 airborne thematic mapper (ATM) scanner and a PLC-
band, fully polarimetric, NASA/JPL SAR sensor. The selected data
set refers to a section (250� 350 pixels) of a scene acquired in an

agricultural area near Feltwell, U.K. [13]. Fig. 3 shows channel 9 of
the ATM sensor and channelL-HV (L-band, HV-polarization) of the
SAR sensor. Images were registered by using the SAR image as a
reference. The available ground truth was used to prepare a reference
map to assess the classification error. We considered five land cover
classes corresponding to five types of crops. The agricultural fields
were randomly subdivided into two disjoint sets: 5124 training pixels
were selected from the fields of one set and 5820 test pixels were
taken from the fields of the other set. Fifteen channels were selected
to form a feature vector for each pixel: we selected the six ATM
channels corresponding to TM channels in the visible and infrared
spectrum (except the thermal band) and the nine SAR channels in
the PLC-band and HH-, HV-, VV-polarizations. The noise affecting
the intensity values of the images was reduced by applying a simple
running mean filtering to both the ATM (5� 5 window) and the
SAR (9 � 9 window) images.

B. Results and Discussion

To evaluate the effectiveness of the proposed training technique,
three different experiments were carried out. In these experiments, the
proposed technique was compared with the classical one in terms of
classification accuracy, stability, and processing time. As suggested
in the literature [9], the classical approach was implemented by using
the k-meansclustering algorithm (based on the Euclidean distance)
and thep-nn criterion (withp equal to two). Concerning the proposed
algorithm, parametersp andM were taken equal to two and three,
respectively.

The first experiment compared the overall classification errors
(versus the number of hidden units) made by the RBF classifier
when using the proposed and the classical training techniques. Several
trials were carried out, increasing the number of hidden neurons (and
hence the number of kernel functions) from 15 to 100 (by steps
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Fig. 4. Classification errors made on the test set by the RBF neural classifier
trained by using both the classical and the proposed techniques versus the
number of hidden units.

equal to five). For the sake of simplicity, an equal number of kernel
functions for each class was chosen in all of the trials carried out with
the proposed technique. Results, shown in Fig. 4, confirm that the
presented technique significantly reduces the classification error made
by the RBF neural classifier. In particular, the lowest classification
error made by using the classical technique was equal to 13.5% (with
90 hidden units), whereas the minimum classification error made with
the proposed technique decreased to 9.5% (with 35 hidden units). In
addition, Fig. 4 points out that the classification error made with the
classical technique follows an oscillatory behavior with regard to the
number of hidden neurons considered. On the contrary, the proposed
technique results in a more stable trend of the classification error,
thus providing a better framework for choosing the architecture of
the network.

The second experiment showed the stability of the overall clas-
sification error made by the RBF neural classifier trained by using
both the proposed and the classical techniques, despite the random
initialization of the cluster centers. Fifteen trials were carried out
changing, in a random manner, the initial cluster centers for a given
number of kernel functions. For this experiment, the number of kernel
functions was fixed at 50 (i.e., ten per class when using the proposed
technique). Table I gives the class by class means and standard
deviations of the classification errors computed for the 15 trials
carried out using both the proposed and the classical techniques. From
this table, it is easy to deduce that the proposed technique, besides
reducing the overall classification error, also shows a more stable
behavior versus the random initialization of the cluster centers. In
particular, the overall classification error made by the RBF classifier
trained with the classical training technique was found to vary from
13.5 to 20.2%, the mean and the standard deviation being equal to
16.4% and 2.19, respectively. The overall classification error made
by the classifier trained by using the proposed technique was found
to range from 9.7 to 12.0%, the mean and the standard deviation
being equal to 10.8% and 0.81, respectively. Table I also shows that
the proposed technique results in a more balanced classification error
on the classes, thanks to the better class descriptions provided by the
kernel functions.

The third experiment compared the overall classification error
of the RBF classifier trained by using both the proposed and the
classical techniques with the errors made by an MLP, a probabilistic
neural network (PNN) and ak-nearest neighbor (k-nn) nonparametric
classifiers [13]. The phase of the architecture design and the trials
carried out using the above-mentioned classifiers on the same data
set, as considered in this paper, are described in [13]. Table II shows

TABLE I
STATISTICS (MEAN AND STANDARD DEVIATION) COMPUTED FOR THE

CLASSIFICATION ERRORSMADE IN 15 TRIALS CARRIED OUT ON THE

TEST SET BY USING THE RBF NEURAL CLASSIFIER TRAINED WITH

BOTH THE PROPOSED AND THECLASSICAL TECHNIQUES. TO CARRY

OUT THE TRIALS, THE NUMBER OF HIDDEN UNITS WAS SET TO 50

TABLE II
THE SMALLEST ERRORS ON THECLASSIFICATIONS OF TEST PIXELS PERFORMED

BY THE RBF NEURAL CLASSIFIER TRAINED WITH THE PROPOSED

TECHNIQUE (P.T.)AND THE CLASSICAL TECHNIQUE (C.T.), AND BY THE

MLP CLASSIFIER, THE PNN CLASSIFIER, AND THE k-nn CLASSIFIER

the best results obtained by the different classifiers in terms of the
classification error on the test set. As we can see, even though the
classification error made by the RBF classifier trained by using the
proposed technique (i.e., 9.5%) is similar to those made by using
the k-nn (i.e., 10.2%) and the MLP (i.e., 10.4%) classifiers, it is the
lowest one. This highlights that the proposed technique makes RBF
classifiers a valid alternative to the nonparametric classifiers widely
used in remote-sensing applications.

From the point of view of the processing time, the proposed
training technique proved slightly faster than the classical one. In
particular, in the experiments carried out, the training time was
reduced by about 15%. This reduction in the training time was
obtained by the simplification of the clustering problem associated
with the presented technique.

In comparison with the other classifiers used in the experiments,
the proposed technique required a much smaller training time than the
MLP and SNN classifiers, whereas it proved slower than the PNN
and k-nn classifiers.

VI. CONCLUSIONS

In this paper, we have presented a simple supervised technique
for training the hidden layer of RBF neural network classifiers. The
proposed technique, unlike traditional ones, selects the centers and
widths of the kernel functions associated with the hidden neurons of
the network by taking into account the class-membership information
of training samples. In particular, such a technique avoids the
generation ofmixedkernel functions. In addition, it tunes the kernel
function widths to limit the overlapping in boundary regions between
different classes, while maintaining a certain overlapping inside
each class. The proposed technique has significant advantages over
traditional techniques:

1) increases the separability of classes in the kernel-function space
and hence contributes to reducing the classification error made
by the classifier;

2) reduces the oscillatory behavior of the classification error
made by the network versus the number of hidden units,
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thus providing a better framework for defining the network
architecture;

3) improves the stability of the classification error of the network
versus the random initialization of the kernel centers during
the training process.

As a final remark, it is worth noting that, when the classes present
a high degree of overlapping in the input space, the complexity of
the classification problem may limit the capabilities of the proposed
technique to reduce the overlapping of the kernel functions associated
with the different classes. However, even in these extreme cases, the
presented method prevents the generation ofmixedclusters, whereas
classical techniques would generate a large number of overlapping
mixed clusters, which would strongly affect both the classification
capability and the stability of the network.
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