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Abstract—During the past decades, radar sounder (RS) instru-
ments have been effectively used to detect subglacial lakes (SLs).
SLs appear as flat, smooth and bright reflectors in RS radar-
grams. The visual interpretation has been the main approach to
SL detection in radargrams. However, this approach is subjective
and inappropriate for processing large amounts of radargrams.
While the analysis of RS data for understanding the subglacial
hydrology has recently received increased attention, the literature
on the development of automatic methods specifically designed
for SL detection is still limited. In order to fill this gap, in this
paper we propose a novel automatic technique for SL detection.
The technique is made up of two steps, i.e., i) feature extraction,
and ii) automatic detection. In the first step, we define and extract
three families of features for discriminating between lake and
non-lake radar reflections. The features model locally the basal
topography, the shape of the basal reflected waveforms, and
the statistical properties of the basal signal. In the second step,
we provide the features as input to a support vector machine
classifier (SVM) to perform the automatic SL detection. The
proposed technique has been applied to radargrams acquired
over two large regions in East Antarctica and Siple Coast.
The obtained results, which are validated both quantitatively
and qualitatively, confirm the robustness of the features and
their capabilities to effectively characterize SLs. Moreover, they
prove the potentiality of the method to process large amounts of
radargrams and update the current SL inventory.

Index Terms—subglacial lakes, ice sheet, radar sounder, auto-
matic detection, remote sensing,

I. INTRODUCTION

DURING the past half century, the identification of sub-

glacial lakes (SLs) has been a matter of great scientific

interest [1–9]. This interest is motivated by the key role of SLs

in glaciology, e.g., SLs constrain geothermal flux [6], affect

the dynamics and evolution of the ice sheet [10], represent

a potential (although very extreme) habitat for microbial life

[11, 12], and may contain ancient climate records [13–15].

The fourth and most recent SL inventory in Antarctica,

which is dated 2012 [16], reports 379 lakes, of which ≈30%

have been detected by analyzing ice surface elevation changes

in altimeter data [7]. Such lakes are also called active, to

highlight their observed dynamic behavior as a total or partial

periodical discharge of their water [14]. The remaining ≈70%

of inventoried Antarctic SLs have been detected in data

acquired by airborne radar sounder (RS) instruments [15].

Recent analyses of RS data have also evidenced the presence

of two SLs in Greenland [9] and a hypersaline SL complex in

the Canadian Arctic [17]. Hereafter, we will focus our attention

on the detection of SLs in RS data.

RSs are nadir-pointing instruments specifically designed for

imaging the ice-sheet cross-section. They emit low-frequency

electromagnetic waves and measure the power reflected by

subsurface mechanical and thermal discontinuities, from the

surface to the basal interface below the RS platform along

a predefined path. These measurements are recorded in 2D

matrices called radargrams. So far, for monitoring the Earth

polar regions, glaciers and ice caps, RSs have been operated in

dedicated airborne campaigns, thus providing a large amount

of radargrams. This offered the possibility to study the basal

conditions and identify SLs over wide areas. In the future,

the amount of RS data is expected to drastically increase,

since currently there are ongoing studies for the design of

RS instruments for Earth Observation from space (e.g., [18]).

Such missions could enable the detection of other SLs in areas

unexplored during past and present RS surveys.

The detection of SLs in RS data has been mainly carried

out by visual analysis (e.g., [1], [3], [5]). While this approach

is effective in qualitatively describing the features of SL radar

signatures (e.g., radar coherence, brightness, flatness, smooth-

ness [19]), it is subjective and time consuming, thus unsuitable

for the detection of SLs on large RS datasets. This motivated

the development of automatic techniques for SL detection. As

a first attempt, in [6] the authors present an automatic tech-

nique for SL detection and classification that uses the hydraulic

flatness condition [20] to identify candidate SL interfaces. The

candidate interfaces are classified into four SL classes, i.e.,

definite, dim, fuzzy and indistinct, by using a 2-step approach.

In the first step, the basal reflection coefficients are estimated

by inverting the radar equation assuming literature subsurface

attenuation models. In the second step, the SL candidates are

classified by imposing different constraints (thresholds) on

their specularity and brightness (absolute or relative to the

surroundings). Several other studies have greatly contributed

to our understanding of the basal conditions and subglacial

hydrology. They focused on the development of techniques

for the analysis of the basal interface, the discrimination

between dry and thawed interfaces and the modeling of the

ice sheets. For instance, the technique presented in [21] relies

on subsurface attenuation estimates, the study of the radar

waveforms and their statistical characterization. A technique

based on manual digitization and reflectivity analysis, de-

rived from attenuation- and path-corrected bed echo power,

is presented in [22]. In [23], a method for estimating the

subglacial water geometry, independently on basal depth and

subsurface attenuation, is described. It uses radar bed echo

specularity derived from focusing the RS data with two dif-

ferent antenna apertures. In [24], this method is complemented

with the analysis of the bed trailing echo in order to derive

the distribution of basal water between Antarctic SLs. The

analysis of the basal roughness as a consequence for radar

scattering and basal water discrimination is presented in [25].
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The literature also presents extensive reviews on the advances

in understanding the subglacial environment [26], [27], [14].

An important outcome of such studies is the fact that, in

most cases, active lakes are not visible in RS data [27], some

exceptions being Lake Whillans [28] and a couple of active

lakes in the Byrd glacier catchment [29]. On the other side,

due to their static nature as isolated water bodies [14], the

majority of lakes visible in RS data do not show changes in ice

surface elevation; thus they cannot be detected by analyzing

satellite altimeter data. This requires the development of novel

automatic methods that can detect SL in RS data in an efficient

and objective way.

In this paper we propose a novel automatic technique

specifically designed for the detection of SLs in radargrams.

The main novelty of the technique with respect to the related

literature is the use of a pattern recognition approach based

on machine learning to SL detection. This is an advantage

with respect to existing methods, since it reduces the amount

of human interaction, thus enabling an unbiased, objective and

repeatable SL detection also on large amounts of RS data. The

method is made up of two main steps, i.e., 1) basal interface

feature extraction, and 2) automatic SL detection. The first step

is the main contribution of this work and consists in defining

and extracting a set of discriminative features of the basal

interface for characterizing lake and non-lake interfaces. The

definition of the features relies on several characteristics of the

basal interface observed and reported in the literature. Based

on such observations, we propose extracting three families

of features that characterize locally the basal interface, i.e.,

i) topographic features (which depend on the topographic

variations of the basal interface), ii) shape features (which

model the shape of radar basal returns), and iii) statistical

features (which model the statistical properties of the radar

signals reflected by the basal interface). In the second step,

the extracted features are given as input to a support vector

machine (SVM) classifier [30] to perform the automatic SL

detection. SVM is a supervised parametric classifier, meaning

that in order to learn the properties of the classes, it requires to

input a set of labeled data (in our case lake and non-lake basal

samples) along with a set of features that properly describe

them. This implies a minimum initial human interaction in

the training phase of the SVM. The advantage is that, once

the training is performed and the SVM model parameters are

estimated, applying the estimated SVM model to classify new

data is completely automatic. Moreover, the results obtained

automatically are coherent on all data and thus not affected by

possible different interpretation as in manual analysis of large

data carried out by different scientists. The output of the SVM

is analyzed to derive the degree of uncertainty associated with

the SL detection. It is worth mentioning that this approach

refines, extends and generalizes the method recently proposed

in [31], which was our first attempt to automatically detect

SLs in RS data.

In order to assess the validity of the proposed method, we

applied it to two RS datasets acquired by the MultiChannel

Coherent Radar Depth Sounder (MCoRDS) [32]. The two

datasets have been acquired over large areas of the Lake Dis-

trict in East Antarctica and Siple Coast in West Antarctica [33].
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Fig. 1. Portion of radargram showing the ice sheet subsurface. The basal
interface is the deepest scattering area, visible at about 45-50µs. In the red
rectangle, both lake and non-lake reflections are present. The lake visualized
in this radargram is lake number 71 reported in [16]. The blue and orange
vertical lines are examples of lake and non-lake reflections, respectively. The
waveforms of these reflections are illustrated in Fig. 2(a), whereas the whole
region enclosed in the red rectangle is reported in Fig. 2(b). The radargram
was acquired by MCoRDS in the East Antarctic Ice Sheet in 2013 [33].

We validated the method both qualitatively and quantitatively

according to different metrics. The obtained results prove the

effectiveness of the proposed features in characterizing lake

interfaces for a wide range of lake depths and the usefulness

of the method in discriminating lake from non-lake interfaces.

The remaining of the paper is organized as follows. Sec-

tion II provides a review of the characteristics of the basal

reflections in RS data. The proposed automatic method for

SL detection is described in details in Section III. Section

IV provides and discusses experimental results obtained by

applying the proposed technique to real RS data. Finally,

Section V draws the conclusion of this work and proposes

ideas for future developments.

II. BASAL INTERFACE CHARACTERIZATION IN RS DATA

A review of the literature points out that the basal interface

in ice sheet RS data can be visually identified based on two

main properties: its position in the radargram and its reflected

power. The basal interface is the deepest subsurface target and

induces a higher radar reflection compared to the surroundings

(e.g., see Fig. 1). These properties are due to two main reasons:

i) a higher dielectric permittivity ε of the basal material (εBI

in the range ≈ [4, 80]) with respect to the overlaying ice

(εice ≈ 3.15), and ii) a higher conductivity ς of the basal

material (ςBI in the range ≈ [0.01, 3000]mS/m) compared

to the above ice (ςice ≈ 0.01mS/m) [34], [35]. On the one

hand, εBI ≫ εice implies a higher power reflection coefficient

at the basal interface compared to the interfaces made by

the deepest ice layers. For this reason, the basal interface

generally appears brighter than the closest ice layers. On the

other hand, ςBI ≫ ςice implies a higher absorption through the

basal material compared to the ice column, which causes a fast

power decay as a function of wave travel time [35]. For this

reason, the basal returns are typically the deepest subsurface
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(a) (b)

Fig. 2. Lake versus non-lake basal interfaces in the range and azimuth directions. (a) The lake and non-lake waveforms are highlighted in Fig. 1 in blue and
orange, respectively. The waveforms are aligned with respect to the peak power in order to emphasize the steepness of the lake waveforms compared to that
of the non-lake waveforms. (b) 3D view of the power values enclosed in the red rectangle in the radargram shown in Fig. 1.

structures visible in radargrams. While these general properties

are common to all kinds of basal interfaces, different types of

basal materials (e.g., water, sediments, rock) reflect the radar

waves differently, thus showing a radar signature characterized

by different properties. Since the aim of this work is the

detection of SLs, in the following, we will investigate and

compare basal lake interfaces and basal non-lake interfaces.

Qualitative analyses of the basal interface in radargrams

acquired over well known SLs (e.g., Vostok lake [19], Horse-

shoe lake [6], Komsomolskoe lake [5]) point out peculiar

characteristics of lake reflections, both in the range and

azimuth directions. These characteristics are highly related to

the geophysical properties of SL, i.e., topography, dielectric

permittivity, and interfacial roughness. As reported in [6],

due to the absence of basal shear stress and under the

assumption that the water supports all overburden pressure,

lakes are exceptionally flat (i.e., lakes have a low topographic

variability). The dielectric permittivity of water (εwater = 80)

is greater than that of any other subglacial material (e.g.,

bedrock, sediments, soil) [35]. Moreover, lakes are perceived

as smooth at the wavelength scale [6] (i.e., lakes have an

interfacial roughness comparable or larger than the typically

used wavelengths λ). The much higher dielectric permittivity

along with the smoothness of lake interfaces yield narrow

basal waveforms characterized by high peak power, and steep

leading and trailing edges, as derived in [21] in the case of wet

basal interfaces. This can be seen in Fig. 2(a), which shows

an example of lake waveform. Moreover, the flat topography

and smoothness of lake interfaces imply that in radargrams

lakes appear as flat interfaces characterized by a high degree

of correlation on several consecutive traces in the flightline

direction. An example of lake interface is shown in Fig. 1 at

the azimuth location highlighted in cyan. As expected, in the

radargram the lake appears as a flat interface in the azimuth

direction. Fig. 2(b) illustrates the 3D view of the portion of

radargram enclosed in the red rectangle in Fig. 1, highlighting

both the lake waveform steepness in the range direction and

its flatness in the azimuth direction. Moreover, the high degree

of correlation of lake waveforms on several consecutive traces

is also evident in this figure.

The reflections of basal non-lake interfaces are, in general,

qualitatively different from those of lake interfaces at similar

depths. Compared to lake waveforms, in the range direction

non-lake waveforms are usually wider and characterized by

lower peak power and moderate leading and trailing edges

[see the orange waveform in Fig. 2(a)]. This is due to both the

fact that εnon-water ≪ εwater and to the usually higher roughness

of non-lake interfaces [36], [6]. Indeed, rough surfaces scatter

the radar wave in different directions causing a decrease in

peak power and introducing a strong non-coherent component

determining moderate waveform edges [21], [37]. The higher

roughness and usually more variable topography of non-lake

interfaces also affect their azimuth signatures in radargrams.

Accordingly, non-lake interfaces show less flat signatures and

a lower degree of correlation on consecutive traces compared

to lake interfaces [see, e.g., Fig. 1 and Fig. 2(b)]. This

holds especially for the interior of East Antarctica, which

is characterized by a generally rougher bedrock topography

with frozen bed. Indeed, the contrast between lake and non-

lake signatures in terms of flatness, correlation on consecutive

traces, and waveform steepness may be lower in sedimentary

regions (e.g., the Siple Coast in West Antarctica). However,

in these areas, the power contrast between ice-water and ice-

sediments interfaces can be used for the discrimination of SLs.

In this context, studies performed on radar data also pointed

out the direct relationship between interfacial roughness and

statistical properties of the reflected radar signal (e.g., [21, 38–

40]). In [38], the author studied and discussed the differences

in local statistics of reflecting surfaces with different roughness

(air/sea, air/ice and ice/water) estimated from RS data acquired
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over the Ross Ice Shelf in Antarctica. In [21], the shape of the

statistical distribution of the relative intensity of the RS signal

has been used as a proxy for validating the presence of dry

and thawed subglacial interfaces.

The above analysis emphasizes that lake and non-lake in-

terfaces show potentially measurable differences which could

drive the automatic detection of SLs. Indeed, this analysis

allowed us to define and extract three families of features,

i.e., i) topographic, ii) shape, and iii) statistical (see Section

III-A), which are used by the SVM classifier for the automatic

SL detection (see Section III-B).

III. PROPOSED METHOD

Let us denote a radargram as:

P = {P (x, y) |x ∈ X = [1, . . . , nT ], y ∈ Y = [1, . . . , nS ]} ,
(1)

where nT and nS are the number of traces in the azimuth

direction and the number of samples in the range direction,

respectively. P (x, y) is the measured power in dB scale. The

proposed method takes as input the radargram and aims to

provide, for each trace x0, a label qx0
∈ {−1,+1} for the

basal interface to belong to either a non-lake (qx0
= −1) or to

a lake interface (qx0
= +1). Here we consider that the input

radargram has been already corrected according to standard

methods in order to remove the distortions due to the aircraft

elevation variations.

The proposed method consists of two main parts, i.e., i)

basal interface feature extraction, and ii) automatic detection

of SLs. In the first part, a set of features that quantitatively

capture the properties of the basal interface are extracted. In

the second phase, the features are given as input to an SVM

classifier that automatically performs the SL detection and

estimates their probability. The description of the processing

steps within each part is provided in details in Section III-A

and Section III-B, respectively.

A. Basal Interface Feature Extraction

The extraction of discriminant features for SL detection is

based on the analysis presented in Section II. Accordingly, we

extract three families of features, i.e., 1) topographic features,

2) shape features, and 3) statistical features. In order to capture

the local characteristics of the basal interface and the higher

azimuth correlation of lake interfaces, all the features are

extracted considering sequences of consecutive basal wave-

forms of azimuth length Nx. In particular, Nx is given by a

trade-off analysis that considers the expected minimum lake

dimension, as well as constraints on the number of samples

to ensure a significant statistical analysis and sufficient feature

discrimination capabilities. In the range direction, we focus on

the power measurements belonging to the main lobe of lake

basal waveforms, which has a width denoted with Ny .

1) Topographic Features: In order to measure the local

variability of the basal topography, we propose extracting

the root mean square height (RMSH) feature, denoted ξ.

The RMSH represents the standard deviation of the basal

topography about a mean surface [39], [25], and is defined

as (2):

ξx0
=

√

1

Nx − 1

∑

x∈X0

[

TBI(x)− T
BI

(x0)
]2

, (2)

where X0 = [x0 − nx, x0 + nx] represents a sequence of

Nx = 2nx+1 traces centered on trace x0, with nx ∈ Z
+, and

TBI(x) is the topography of the basal interface, computed as:

TBI(x) =

[

Elv(x)− vair∆air

2

]

+

−
[

ySI(x)− yBI(x)
]

· viceδice

2
, ∀x ∈ X,

(3)

where vair = 3 · 108m/s and vice = 1.69 · 108m/s are the speed

of the wave in air and ice, respectively. Elv(x) is the elevation

of the aircraft with respect to the WGS84 system, ySI(x) is

the sample position of surface interface (air/ice) peak power,

and yBI(x) is the sample position of the basal interface peak

power on trace x. yBI(x) can be obtained by using automatic

methods (e.g., [41]). ∆air(x) is the measured 2-way travel time

of the wave in the air and δice(x) is the 2-way travel time

corresponding to an ice subsurface sample. T
BI

(x0) is the

mean basal topography inside the azimuth window, computed

as:

T
BI

(x0) = E
{

TBI(x)|x ∈ X0

}

, (4)

where E {·} is the expectation operation. Since SLs are

characterized by a flat topography, we expect ξx0
→ 0 for

traces x0 belonging to lake interfaces. On the other hand, the

greater the basal topographic variation, the greater ξx0
, which

is expected in the case of non-lake basal interfaces.

As already mentioned, the topography and the interfacial

roughness influence the correlation of basal reflected wave-

forms. In order to quantify the local waveform correlation,

we propose extracting the following feature:

ζx0
= E

{

cov(wx0
, wx)

σwx0
σwx

|x ∈ X0, x 6= x0,

}

(5)

where cov(a, b) denotes the covariance between waveforms

a and b, and σa denotes the variance of signal a. wx is a

basal waveform (column vector) containing the measurements

of power on trace x belonging to a neighborhood Bx0
that

includes Nx = 2nx + 1 consecutive traces, defined as:

Bx0
= {P (x, y) |x ∈ X0,

y ∈ [ min
x∈X0

(yBI(x))− ny, . . . , max
x∈X0

(yBI(x)) + ny]}, (6)

where ny ∈ Z
+ and 2ny + 1 = Ny . From (6) one can see

that the neighborhood Bx0
is a bounding box, whose size in

the azimuth direction is constant and equal to Nx, ∀x0 ∈ X .

However, in the range direction, the size of the bounding box

varies as a function of the local topographic variability, with

the condition that the main lobe of the basal waveforms is

always inside the bounding box, on all Nx traces. According to

this reasoning, we expect that in the case of large topographic

variations, the bounding box Bx0
has a range size greater

than Ny and contains, along with waveform mainlobes, also

sidelobes and noise measurements [see Fig. 3(a)]. In the case
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(a) (b)

(c) (d)

Fig. 3. Schematic representation of (a) the bounding box B, (b) the compact
box C, and (c) the adaptive box A of a non-lake sequence, (d) a lake sequence,
for which A ≡ B ≡ C, approximately. The white and black dots correspond
to the leading and trailing edges, respectively.

of ideally flat interfaces, the bounding box has a range size

equal to Ny and includes only the main lobe of all the Nx

waveforms [see Fig. 3(d)].

Two main considerations can be derived from (5) and

(6). First, the greater the local topographic variability of the

basal interface, as in the case of non-lake interfaces, the less

correlated the waveforms inside Bx0
, i.e., ζx0

→ 0. Second,

ideally ζx0
→ 1 for samples x0 belonging to flat smooth

lake interfaces, for which the bounding box mainly contains

aligned main lobes of similar waveforms. On the basis of these

observations, it is clear that the use of the bounding box Bx0

for the calculation of ζx0
results in a great discrimination

capability of the feature. In contrast, the computation of

the correlation inside, for instance, a rectangular (compact)

window Cx0
of size Nx×Ny moved over the basal interface (as

in [31]) is less effective. Indeed, when the rectangular window

is moved over interfaces with large topographic variation,

several reflected waveforms may fall outside the window in

the range direction [see Fig. 3(b)], thus leading to estimated

correlation values unrepresentative of the real basal scattering.

2) Shape Features: As highlighted in Section II, the shape

of the waveforms at the basal interface, in terms of steepness

of the leading and trailing edges in the range direction, are

qualitative indicators for the presence of lake interfaces. Here,

we quantify such qualitative indicators by extracting shape

features. To this aim, let us first define Ax0
as a sequence of

Nx = 2nx+1 consecutive basal waveforms centered on trace

x0, with the condition that each waveform in Ax0
has length

Ny = 2ny +1 and is centered in yBI(x), ∀x ∈ X0. Thus, the

sequence Ax0
is defined as:

Ax0
= {P (x, y) |x ∈ X0,

y ∈ [yBI(x)− ny, . . . , y
BI(x) + ny]}.

(7)

Fig. 4. Three dimensional schematic representation of a plane A
l fitted to a

leading edge sequence Al. βl is the slope of the plane with respect to the
range direction.

Note that Ax0
is neither necessarily a compact rectangle Cx0

(see [31]), nor a variable size bounding box as in (6). Indeed,

Ax0
adaptively follows the topography of the basal interface

[see Fig. 3(c)] and contains a constant number of samples

independently of its position.

For the extraction of the shape features, the sequence of

waveforms Ax0
is split into leading edge sequences Al

x0
and

trailing edge sequences At
x0

[see Fig. 3(c)]. The leading and

trailing edge sequences consist of the upper and lower half

of the waveforms, respectively, both including the peak of the

basal interface, such that {Al
x0

∪ At
x0
} = Ax0

and {At
x0

∩
Al

x0
} = P (x, yBI(x)), ∀x ∈ X0.

The key idea for estimating the leading edge steepness,

denoted βl
x0

, is to approximate Al
x0

with a plane and to

estimate its inclination with respect to the range direction. To

this aim, we fit to Al
x0

a plane A
l
x0

defined as:

A
l
x0

= αl
x0

· x+ βl
x0

· y + γlx0
, (8)

where the coefficients αl
x0

, βl
x0

and γlx0
are estimated with

the least squares criterion. Analogously, the trailing edge

steepness, denoted βt
x0

, is given by fitting to At
x0

the plane

A
t
x0

. Note that βl
x0

and βt
x0

are essentially the slopes of the

fitted planes to the waveform edges in the range direction (see

Fig. 4). For this reason, the extracted βl
x0

and βt
x0

features

quantify the shape of the radar waveforms. As such, we

expect lake reflections to be characterized by high values of

|βl| and |βt|. This is due to both the higher basal dielectric

contrast, and reduced roughness over lake interfaces, which

cause a narrow waveform with steep edges. In contrast, non-

lake interfaces, which are characterized by lower dielectric

contrast and greater roughness, yield wider waveforms (see

also Section II). Accordingly, we expect both |βl| → 0 and

|βt| → 0 for non-lake reflections.

An important observation regards the impact of the shape

of Ax0
on the waveform steepness estimation. Besides the

ideal case of x0 belonging to perfectly flat interfaces, for

which Ax0
≡ Bx0

≡ Cx0
[see Fig. 3(d)], the sequence

Ax0
adaptively follows the position of the peak power of

the basal interface. Thus, the leading/trailing edge sequence

only contains the leading/trailing edge of the main lobe of all

the basal waveforms on traces x ∈ X0. The main advantage

of using the adaptive box Ax0
against the bounding box

Bx0
is that the fitting of the planes is performed on only

relevant power measurements of the main lobe, i.e., without
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side lobes and noise samples. On the other hand, the use of

the compact box Cx0
can compromise the plane fitting on

interfaces characterized by high topographic variability, since

several reflected waveforms may fall outside the window in

the range direction [see Fig. 3(b)].

3) Statistical Features: The importance of the statistical

properties of the radar signal has been highlighted in several

applications regarding the automatic analysis of remotely

sensed radar data (e.g., [21], [38], [41], [42], [40]). To exploit

these properties, in this paper we propose the extraction of

the central moments of the basal reflected signal as features

for the discrimination between lake and non-lake interfaces.

Before performing the extraction of these features, it is worth

noting that the use of Ax0
is preferred against the use of Bx0

and Cx0
for two main reasons. First, we aim to perform the

statistical analysis only on the relevant basal backscattered

power (i.e., the main lobe of the waveforms). Second, the

number of samples inside the window should be constant

irrespectively on the topography of the basal interface, to

ensure the comparability of the extracted statistical features.

The first statistical feature we consider is the mean adjusted

basal peak power, denoted by µ̂BI
x0

and defined as [43–45]:

µ̂BI
x0

= E{P (x, yBI(x))+

+2[2(Alt(x) +D
√
εice)]dB+

+2D[Ar]dB},
(9)

where [·]dB indicates power on a dB scale, Alt(x) = vair ·
∆air/2 is the aircraft altitude with respect to the ice surface,

D is the ice thickness and Ar is the one-way depth-averaged

attenuation rate, which can be estimated using literature ap-

proaches, e.g., [46], [43], [47], [44], [45]. According to (9), the

adjustment of the measured basal peak power P (x, yBI(x))
is done in terms of both spreading losses in air and ice

subsurface, and subsurface attenuation effects. Thus, µ̂BI
x0

is

the power measured as if the basal interface was just below

the aircraft. It is a function of roughness-modulated basal

reflectivity [39], [38], system parameters and birefringence

[44]. By neglecting the contribution of the system parameters

and birefringence [45], it follows that in an ideal homogeneous

englacial environment (i.e., with constant attenuation rate),

µ̂BI
x0

contains information directly proportional to the reflection

coefficient of the basal interface modulated (reduced) by its

roughness [39]. In this ideal case, since lake interfaces have

a high reflection coefficient and are smooth at the wavelength

scale (see Sec. II), we expect similar values of µ̂BI
x0

at all

lake interfaces, and greater µ̂BI
x0

at lake interfaces than at non-

lake interfaces, independently on the interface depth. The same

holds in a more realistic heterogeneous englacial environment

with variable attenuation rates if the attenuation rates are

adequately estimated. Thus, µ̂BI
x0

represents a robust feature

for SL characterization and detection.

The roughness of an interface is only related to the wave-

length, thus it is independent on the depth of the interface.

Since the roughness influences the scattering [48], and thus

the statistical properties of the radar signal [42] we expect that

typically smooth lake interfaces and rough non-lake interfaces

can be well distinguished by extracting adequate parameters

from the local statistical properties of the basal reflected radar

signal. In particular, we propose extracting the coefficient of

variation, skewness and kurtosis as other potential discriminant

features for SL detection.

The coefficient of variation, denoted νx0
, is defined as the

ratio between the standard deviation σx0
and the absolute mean

reflected power µx0
, i.e.,:

νx0
=

σx0

|µx0
| . (10)

Lake interfaces, which are strong scatterers, show higher

power and larger standard deviation than non-lake interfaces at

the same depth [49]. On the other hand, because of subsurface

attenuation effects, deeper lakes reflect a smaller mean power

and show a reduced standard deviation than shallow lakes.

In this case, the ratio νx0
reduces the subsurface attenuation

effects, thus yielding comparable the properties of different

lakes at different depths. Hence, the coefficient of variation

νx0
represents a robust feature for discriminating between lake

and non-lake interfaces independently on depth. It is worth

noting that this reasoning holds only if the mean power µx0

inside Ax0
(which is in dB scale) is a positive quantity. Thus,

before extracting νx0
, one may need to tune the input data, by

adding a constant value (in dB) to all the dataset, such that

the minimum power value is greater than zero. Note that this

operation is a data manipulation artifice that does not affect

the classification results, rather it insures the meaningfulness

of νx0
.

The skewness, denoted ψx0
, is defined as:

ψx0
= E{(Ax0

− µx0
)3}/σ3

x0
. (11)

The skewness quantifies the degree of symmetry of a dis-

tribution [50]. A distribution with skewness 0 is perfectly

symmetric, whereas a distribution with negative (positive)

skewness has a long tail towards left (right).

The kurtosis, denoted κx0
is defined as:

κx0
= E{(Ax0

− µx0
)4}/σ4

x0
. (12)

The kurtosis measures the heaviness of the tails of a certain

distribution [51], thus indicating the relative amount of outliers

with respect to the normal distribution. In particular, if a

distribution has a kurtosis κ < 3 (> 3), it has more (less)

outliers than a normal distribution and is called platykurtic

(leptokurtic), whereas a distribution with κ = 3 has a number

of outliers comparable to a normal distribution, and is called

mesokurtic.

We expect the skewness over lake interfaces to be larger

than the skewness over non-lake interfaces, since the skewness

becomes larger as the amount of scattering increases [49].

On the other hand, as pointed out in [52], if there is a weak

concentration of scattered values around the mean (i.e., high

standard deviation), the distribution will be spread or platykur-

tic, whereas if there is a strong concentration around the mean

(i.e., small standard deviation), the distribution is leptokurtic.

According to this analysis, we expect the distributions of

the lake interfaces to be leptokurtic. Moreover, as already

mentioned, because of wave subsurface attenuation effects, we

expect the distribution of samples belonging to lakes located at



7

different depths to have different mean power values. However,

ideally, the degree of symmetry and number of outliers of these

distributions should not be greatly affected by the depth of the

lakes. Hence, the skewness and kurtosis represent other two

robust features for SL characterization independently on depth.

Since higher order central moments tend to be more affected

by the presence of outliers [53], we limit the statistical analysis

at the fourth central moment, in order to avoid providing

ambiguous features to the automatic classifier. Note that the

set of proposed statistical features allows us to overcome

the limitations of the approach proposed in [21], while still

exploiting the potentiality of the statistical properties of the

radar signal for SL discrimination.

Summarizing, the full feature vector of the basal interface

at azimuth position x0 contains nF = 8 features [see (2), (5),

(8), (9), (10), (11), (12)] and is defined as:

vx0
=

{

ξx0
, ζx0

, βl
x0
, βt

x0
, µ̂BI

x0
, νx0

, ψx0
, κx0

}

. (13)

Finally, the feature vectors are normalized and given as input

to the SVM classifier to perform the SL detection.

B. Automatic Detection of Subglacial Lakes

The objective of this step is to predict whether a basal

sample x0 ∈ X belongs to a non-lake (qx0
= −1) or a

lake interface (qx0
= +1). To this aim, any binary classifier

could be used. In this paper we propose to use an SVM clas-

sifier, considering its high performance in binary classification

problems [30] and its success in classifying remotely sensed

data [54], [41]. In the following, we briefly recall the main

principles of SVM, which are useful for understanding the

output of the proposed technique.

Let us assume that nL = n+ + n− out of the nT samples

of the basal interface are labeled by an expert, such that i)

n+ samples are labeled with q = +1, meaning they belong to

lake interfaces, and ii) n− samples are labeled with q = −1,

meaning they belong to non-lake interfaces. All these samples

represent the labeled set L, which is used for training and

testing the classifier. L is defined by the couples (vj , qj) as in

(14):

L = {(vj , qj), j ∈ XL} , (14)

where XL contains the indexes of the labeled samples.

The aim of a supervised classifier is to learn the characteris-

tics of the two classes by using a training set, which is a subset

of the labeled set L (for which both the features and the labels

are known), in order to classify unlabeled samples (for which

only the features are known). To this aim, the SVM classifier

searches for the optimal separating hyperplane between the

classes in the feature space. The optimal hyperplane is the

one that maximizes the distance between itself and the nearest

samples (support vectors) from each of the two classes.

Accordingly, it computes a decision function g(v) such that

q∗ = sign[g(v∗)] = ±1 can be used to predict the label of

any test sample v∗. In the estimation of the decision function

g(v), a kernel function that fulfills Mercer’s condition can be

effectively included. A Mercer kernel function is continuous,

symmetric and nonnegative definite, e.g., linear, polynomial,

Gaussian radial basis function (RBF). Consequently, g(v) is

typically defined as:

g(v) =

nSV
∑

i

χiqiK(vi, v) + b, (15)

where b is the bias, nSV is the number of support vectors,

χi, i = [1, . . . , nSV ] are the Lagrange multipliers and K is

the kernel function. For further details on SVM, the reader is

referred to [30], [54], [55].

The crisp outputs of the SVM (i.e., q∗ = −1 or q∗ = +1)

can be transformed in soft probabilities, i.e., p∗ ∈ [0; 1], in

order to allow a better interpretation of the lake detection

results provided by the described method. To this aim, we

use Platt’s algorithm [56]. This algorithm is based on a

parametric model S that approximates the SVM posterior

class probabilities Pr(q = +1|v) (i.e., the probability that

a sample belongs to class q = +1 given its feature vector v).

In particular, the parametric model is a sigmoid SA,B [g(v)]
defined as:

SA,B [g(v)] =
1

1 + exp(A · g(v) +B)
, (16)

where A,B are the parameters of the sigmoid, which are

optimized using the maximum likelihood estimation approach.

As such, the best fitting parameters Â and B̂ such that

Pr(q = +1|v) ≈ SÂ,B̂ [g(v)], are determined by minimizing

the negative log likelihood of the training data [56], i.e.,:

(Â, B̂) = min
A,B

F (A,B) =

= −
∑

j

(tj log sj + (1 + tj) log(1− sj)
(17)

where

sj = SA,B [g(vj)], tj =

{

n+
+1

n++2
if qj = +1

1

n−+2
if qj = −1

j ∈ XL.

IV. EXPERIMENTAL RESULTS

In order to prove the validity of the proposed method,

we applied it to two RS datasets acquired by the MCoRDS

instrument [32]. However, the technique is general and can be

applied to data acquired by other instruments or using different

instrument parameters and/or data processing algorithms, at

the condition that the basal interface should be visible and

clearly detectable. To ensure the consistency of the SVM

model with respect to the extracted features, the SVM must be

trained and applied to data obtained i) by the same instrument

operated with the same parameters, and ii) using the same

processing algorithms. This implies that the SVM must be

retrained if one of these two conditions changes.

A. Data Description

The two MCoRDS datasets considered in this paper have

been acquired on two large regions in Antarctica, i.e., Lake

District and Siple Coast, in the autumn campaign in 2013.

Both datasets have been processed with range and azimuth

compression and with the minimum variance distortionless

response (MVDR) algorithm for clutter reduction, to enhance
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(a) (b)

(c)

Fig. 5. Ice thickness map [57] of the (a) Lake District and (b) Siple Coast regions surveyed by MCoRDS in the airborne campaign held in autumn 2013.
Overlapped are the locations of the investigated MCoRDS radargrams (from 7 to 69, and from 26 to 48, for LD and SC, respectively) with alternating gray
and white colors. The locations of the radar-detected and active inventoried SLs in the two regions are represented with magenta dots and black polygons,
respectively. In the LD dataset, the locations of the reference lake and non-lake interfaces are highlighted with blue and red, respectively. (c) Location of the
LD and SC flightlines overlapped on the one-way depth averaged attenuation rate estimated in [43].
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TABLE I
PARAMETERS OF THE MCORDS SYSTEM AND INVESTIGATED DATA.

Campaign Lake District Siple Coast

Number of radargrams 63

Platform type P3 aircraft

Platform height above surface ≈500m

Central frequency 195MHz

Wavelength in ice ≈0.86m

Pulse repetition frequency 12kHz

Bandwidth 30MHz

Range resolution in ice (pulse compressed) 4.3m

Range spacing in ice 2.8m

Azimuth resolution (SAR processed) 25m

Azimuth spacing 30m

Across-track resolution (pulse limited) 70m

Total number of traces nT 104559 38289

Total traveled distance ≈3000km ≈1125km

Basal interface depth (ice thickness) 247m - 4752m 737m - 2100m

Estimated mean one-way attenuation rate [43] 12dB/km 30dB/km

the basal signal [58]. The parameters of the RS system and the

acquired data specifications are given in Table I. In particular:

• The analyzed Lake District (LD) dataset was acquired

over a large part of the continent, with extremely variable

ice thickness [see Fig. 5(a)] and relatively low attenuation

rate (mean value equal to 12dB/km) [see Fig. 5(c)]

[43]. The location of the flightline corresponds to re-

gions where previous studies have reported several radar-

detected SLs (e.g., [16]). The flightpath of the analyzed

LD dataset is almost circular, starting from the McMurdo

Station, passing over Dome C, twice over the Vostok

lake and then coming back to the McMurdo Station. The

whole LD dataset is composed of 77 radargrams, of which

we discarded the first 6 and the last 8 radargrams, since

they were acquired over the mountains nearby McMurdo

Station. Thus, we analyze the remaining 63 radargrams

(from radargram 7 to radargram 69), which cover a

distance of about 3000km (see Fig. 5).

• The Siple Coast (SC) dataset was acquired over the

MacAyeal Ice Stream going South through the Bind-

shadler Ice Stream towards the C1 tributary of Kamb

Ice Stream and coming back towards the MacAyeal Ice

Stream on a parallel track. The flightline, which is about

1125km long, crosses a region with several active SLs,

but no radar-detected SL [16] except for a location near

the C1 tributary of Kamb Ice Stream. There a recent work

has claimed the presence of a basal distributed water sheet

detected by analyzing RS data [24]. The ice has smaller

thickness variability than in the case of the LD dataset

[see Fig. 5(b)], but larger estimated values of attenuation

rate, (mean value equal to 30dB/km) [see Fig. 5(c)].

The analyzed SC dataset contains 23 radargrams, from

radargram 26 to radargram 48 of the full dataset acquired

in the SC campaign, which contains 76 radargrams.

An initial analysis of the data pointed out a difference of

≈5dB between the mean noise power of the LD and SC

datasets (data are not radiometrically calibrated), which we

compensated before the feature extraction in order to yield

comparable input-output data. Besides the MCoRDS datasets,

we used the one-way ice attenuation rates of Antarctica esti-

mated in [43] as input to the extraction of the mean adjusted

peak power. This dataset is available at a horizontal spacing of

5km, which is much greater than the azimuth spacing of the

RS data, i.e., 30m (see Table I). To slightly compensate for

this difference, we upsampled the attenuation rate map with

a factor of 5 (i.e., final horizontal spacing of 1km) using the

bilinear interpolation method.

The most recent SL inventory [16] is dated 2012, i.e.,

one year prior to the LD and SC MCoRDS campaigns,

which were held in 2013. For this reason, the datasets may

contain SLs which are not inventoried. In order to train and

test the classifier, we initially collected reference samples of

both lake and non-lake interfaces, according to the following

strategy. The lake samples were collected by crosschecking

the locations and depths of the SLs inventoried in [16] with

the location, depth and reflectivity of the basal interface in

the MCoRDS dataset. By doing so we validated and thus

confirm the presence of N lakes
ref = 4 inventoried lakes in the

MCoRDS dataset, i.e., lake 101 in radargram 14, lake 73 and

lake 71 in radargram 30, lake 2 (Vostok) in radargrams 29,

40, 45, 46, located at depths of approximately 3420, 3020,

3570, and 4100m, respectively. Lake 169, at 2620m depth, is

likely to be also present in the LD dataset. However, we do

not consider the samples of lake 169 since the navigation data

at its location report an aircraft roll larger than 15◦, which

may drastically reduce the reflected power, thus generating

unreliable features. Moreover, given that the aircraft passed

twice over lake Vostok, which is a very extended lake, the total

number of samples of Vostok lake is very large compared to all

the others, and may bias the classifier towards the detection

of lakes with features similar to Vostok. In order to avoid

this issue, in the experiments we used only a subset of Vostok

samples. Thus, the total number of samples of all the reference

lakes considered in the analysis is n+ = 1771. The non-lake
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samples were collected from locations that do not overlap with

the coordinates of the inventoried SLs according to a careful

visual interpretation of the basal signature in radargrams, i.e.,

sequences of traces with evident topographic variability and

roughness. The total number of collected non-lake samples is

n− = 3405. Therefore, the total number of labeled samples

is nL = n+ + n− = 5176. Fig. 5 shows the locations of

the lakes and non-lake interfaces used as reference in the

experiments, with blue and red, respectively. It it is also worth

mentioning that lakes 174, 57 and 106 are very close to the

LD flightline, in radargrams 12, 31 and 60, respectively, at

depths comparable to the estimated depth of basal returns

in the radargram. However, from the visual analysis of the

reflections in the radargrams it is not possible to confirm with

high confidence the presence of these lakes in the LD dataset.

Thus, these lakes were not included in the training of the

SVM and in the quantitative analyses. However, they represent

good canditates for qualitatively analyzing the behavior of the

features and the output of the algorithm. Another important

observation regards the fact that training samples are chosen

from the LD dataset only, whereas the robustness of the

algorithm is verified on both the LD and SC datasets.

B. Parameter Setting

The input parameters of the method are Nx and Ny , defining

the azimuth and range size of the basal waveform sequences,

and the parameters of the SVM.

The parameters Nx and Ny can be straightforwardly set

based on the characteristics of the investigated data and targets:

• Ny should be set based on the width of the main lobe of

lake reflected waveforms. To this aim, we performed an

analysis of several waveforms reflected by labeled lake

interfaces and derived that, in average, in the investigated

MCoRDS dataset the width of the main lobe is Ny = 11
samples.

• Nx should be set based on a trade-off between algorithm

constraints and minimum expected size of the SLs. On the

one hand, regarding the algorithm constraints, Nx should

be sufficiently large to i) ensure meaningful statistics in

the extraction of the statistical features, and ii) guarantee

sufficient discrimination capabilities of the features (for

further details, see Fig. 8). On the other hand, an analysis

of the distribution of the lengths of all known SLs in

Antarctica has been performed in [15]. The analysis

points out that the statistical distribution of the lengths

of such lakes is positively skewed, with the bulk of SLs

of less than 10km length and with the modal size being

5km (see Fig. 5 in [15]). However, there are several

water bodies with dimension much smaller than 2km,

among which a large part are about 500m long [36],

[16]. Considering the azimuth spacing of the MCoRDS

instrument (i.e., 30m, see Table I), 500m corresponds to

Nx = 17 traces. This results in Nx ·Ny = 187 samples,

which meets the above algorithm constraints.

For the classification, we used an RBF kernel for the SVM.

This choice is motivated by the fact that the RBF kernel is

typically more flexible than the linear kernel and it usually

outperforms the polynomial kernel in convergence time [55].

Therefore, the SVM model parameters are the penalty error

term and the width of the RBF kernel. In order to estimate

them, we used a classical n-fold cross-validation approach [55]

with n = 10 folds.

According to the above observations, the method depends

on only four input parameters.

C. Analysis of the Extracted Features

In the following, we assess the effectiveness of the proposed

features extracted from the MCoRDS datasets. Fig. 6 shows

the features of the non-lake/lake sequences of Nx = 17 basal

waveforms centered on the orange/blue traces in Fig. 2(b). In

particular, Fig. 6(a) and 6(b) show a qualitative representation

of the corresponding adaptive and bounding boxes for the non-

lake and lake sequences, respectively; Fig. 6(c), 6(d), 6(e),

6(f) and 6(g) show the 3D view of the investigated sequences,

and the fitting of the leading and trailing edges; Fig. 6(i) and

6(j) show the statistical distribution of the samples within the

adaptive boxes. From the analysis of the figures and values of

the features, one can see that the investigated lake sequence

with respect to the non-lake sequence is characterized by:

• a smaller RMSH (ξnon-lake = 2.31m> ξlake = 0.33m);

• a higher local correlation (ζnon-lake = 0.73 < ζlake =
0.97);

• a higher waveform steepness of both the leading edge

(|βl
non-lake| = 3.02 < |βl

lake| = 7) and the trailing edge

(|βt
non-lake| = 1.89 < |βt

lake| = 4.78);

• a higher mean adjusted basal peak power (µ̂BI
non-lake =

−1.75dB < µ̂BI
lake = 11.10dB);

• a higher coefficient of variation (νnon-lake = 0.025 <
νlake = 0.044);

• a higher skewness (ψnon-lake = −0.5 < ψlake = 0.09);

• a smaller kurtosis (κnon-lake = 3.1 > κlake = 2.12).

All these results confirm the expectations about the topo-

graphic, shape and statistical features, as derived in Sec. III-A.

In order to analyze the variability or coherency of the

proposed features along successive basal sequences, Fig. 7(b),

7(c), 7(d) and 7(e) report the features extracted for the basal

interface illustrated in Fig. 7(a), which contains the reflection

of lake 71 [also illustrated in the radargram example in Fig.

2(b)]. The analysis of these figures i) confirms what expected

in terms of feature values over lake and non-lake interfaces

(see Sec. III-A), and ii) points out a greater coherence of the

features over the lake reflection than outside it.

Another observation regards the fact that the values of

the features tend to lose coherence towards the sides of the

lakes. This is due to the employed sliding window approach

which acts like a low-pass filter in the azimuth direction,

thus smoothing the borders of the targets. In order to better

analyze the effect of the size of the window in the azimuth

direction (i.e., sequence length) on the extracted features, Fig.

8 illustrates the features extracted for the basal interface shown

in Fig. 7(a) with fixed Ny = 11 and variable Nx ∈ [9, . . . , 33]
(corresponding to an azimuth distance between ≈ 250m and

1000m). In particular, the lake reflections are between traces

50 and 106 and the values of the extracted features (for
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 6. Topographic, shape and statistical features for: (left) the non-lake
basal sequence centered on the orange trace (i.e., trace 19) in Fig. 2(b), and
(right) the lake basal sequence centered on the blue trace (i.e., trace 66) in
Fig. 2(b). (a), (b) bounding box B (all pixels) versus adaptive box A (pixels
marked with white and black dots) and values of the topographic (RMSH
ξ and local correlation ζ) features; (c) and (d) 3D view of the sequences
belonging to the adaptive box; (e) and (f) leading edge sequences (marked
with white dots), and (g) and (h) trailing edge sequences (marked with black
dots) along with the corresponding fitted planes and values of the leading and
trailing edge steepness features, i.e., βt and βl; (i) and (j) histograms of the
samples inside the adaptive box and values of the extracted statistical features
(i.e., adjusted peak power µ̂BI , coefficient of variation ν, skewness ψ and
kurtosis κ).

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 7. (a) Portion of radargram showing lake and non-lake reflections [also
illustrated in Fig. 2(b)] and corresponding (b) topographic features, (c) shape
features, (d) and (e) statistical features, (f) lake detection probability. The
features have been extracted by considering Nx = 17 and Ny = 11, as
derived in Sec. IV-B.
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Fig. 8. Effect of azimuth window size Nx on the features.

variable Nx) over the lake traces are enclosed in the black

rectangle. The horizontal black dotted line marks the values

of the features computed with Nx = 17 [which are thus

equivalent to the features reported in Fig. 7(b), 7(c), 7(d) and

7(e)]. As one can see in Fig. 8, the effect of changing the

azimuth sequence length Nx is as in the following:

• an increase of the sequence length, i.e., Nx ≫ 17,

tends to oversmooth the features at the borders of the

lake interface. This is particularly evident in Fig. 8 for

the correlation and the shape features. This may result

in lower performance for the detection of lakes whose

azimuth extent is comparable to the imposed detection

limit (i.e., 500m).

• a decrease of the sequence length, i.e., Nx ≪ 17, often

implies the estimation of features with similar values

for both lake and non-lake interfaces. For instance, this

is evident in Fig. 8 for the correlation, skewness and

kurtosis. Indeed, since the correlation depends mainly

on the topographic variability, it is reasonable that in a

small neighborhood the topography can be approximately

constant also over bedrock interfaces. Moreover, a small

Nx may not guarantee sufficient samples for a significant

statistical analysis, thus leading to unstable estimates with

greater oscillations.

The above analysis confirms that, given the characteristics

of the MCoRDS datasets, Nx = 17 traces represents a

good trade-off between feature discrimination capabilities and

accurate SL detection over the greatest part of their length.

In order to understand the potentiality of the proposed

features for discriminating lake from non-lake interfaces at

a larger scale, in the following we analyze their statistical

distribution for all the reference labeled samples. Fig. 9 reports

Fig. 9. Histograms of the values of the features for the non-lake labeled
samples versus the lake labeled samples.

the histograms of features extracted from the n+ = 1771 lake

samples (in blue) and the n− = 3405 non-lake samples (in

red). The analysis of the figure points out that the histograms

of the features calculated on lake samples have either a small

variance (e.g., for ξ, ζ, ν, ψ, κ), or are distant from the his-

tograms obtained on non-lake samples (e.g., for βl, βt, µ̂BI ).

The small variance indicates that the corresponding features

are particularly suitable for characterizing SLs independently

on depth. The distant modes suggest the capability of the

features in discriminating lake from non-lake interfaces and

their robustness to subglacial attenuation. The analysis of the

figure also confirms that, as expected (see Section III-A), the

lake interfaces have small topographic variability (i.e., the peak

of the histogram of ξ → 0), high correlation (i.e., the peak of

the histogram of ζ → 1), high waveform edge steepness (i.e.,

higher values of |βl| and |βt|), high adjusted peak power and

high coefficient of variation. Another important observation

that can be derived by analyzing Fig. 9 regards the shape of the

statistical distribution of non-lake and lake basal sequences: i)

the shape of the histograms of non-lake sequences is typically

negatively skewed (the peak of the red histogram of ψ is at

value <0) and mesokurtic (the peak of the red histogram of

κ is at value ≈ 3) and ii) the shape of the histograms of lake

sequences is typically positively skewed (the peak of the blue

histogram of ψ is at value >0) and platikurtic (the peak of

the blue histogram of κ is at value <3). The behavior of these

features is in line with the theoretical expectations (see Section

III-A3) and suggests that other potential SLs, currently not

inventoried, can be described by similar values of the extracted

features.
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TABLE II
QUANTITATIVE RESULTS OBTAINED BY VARYING THE TRAINING SET SIZE. FOR EACH TRAINING SET SIZE, 10 RANDOM EXPERIMENTS ARE PERFORMED,
AND THE MEAN VALUES (IN PERCENTAGE) AND STANDARD DEVIATION IN TERMS OF RECALL, SPECIFICITY, OVERALL ACCURACY AND PRECISION ARE

PROVIDED.

Training set size x%

(x% randomly picked

from 50% labeled lake

and 50% labeled non-lake data)

25% 50% 75% 100%

n+ 221 442 663 884

n− 426 851 1277 1702Train

Total 647 1330 1940 2586

n+ 884 884 884 884

n− 1703 1703 1703 1703

Number

of samples

Test

Total 2587 2587 2587 2587

Mean 98.94 99.69 99.71 99.84
Recall ( = hit rate = 100 - miss rate)

Std 0.64 0.21 0.31 0.17

Mean 98.44 99.08 99.34 99.46
Specificity ( = 100 - false alarm rate)

Std 0.79 0.41 0.23 0.25

Mean 96.97 98.22 98.73 98.96
Overall Accuracy

Std 1.57 0.81 0.46 0.48

Mean 98.60 99.28 99.47 99.59

Performance

measures [%]

on 10 random

experiments

Precision
Std 0.55 0.27 0.19 0.16

D. Classification Results

In order to asses quantitatively the performances of the

method and analyze the stability of the results, we provide

obtained classification results in terms of four commonly used

metrics, i.e., recall, specificity, overall accuracy and precision.

These have been computed by splitting the labeled dataset into

training and test sets, according to the following approach. The

test set consists of 50% samples picked randomly from all

labeled lake and non-lake data, respectively. In the training

phase, four training sets are formed with 25%, 50%, 75%

and 100% (i.e., the maximum number) of the remaining lake

and non-lake labeled data, respectively. Thus, this approach

provides a means to understand the impact of the number of

training samples on the final results. In order to asses the

stability of the results at the random choice of the training

samples, 10 random experiments have been performed by

repeating the whole random selection procedure for each

training/test set. Table II reports the number of lake and non-

lake samples in the train and test sets, as well as the obtained

results in terms of mean value and standard deviation of the

four metrics for each training/test set generated according to

the described validation approach. From the analysis of the

results, the following observations can be derived:

• The mean value of the considered measures increases by

increasing the size of the training set, confirming the

expected correlation of the results with the size of the

training set. As such, the best results (i.e., performance

greater than 98.96% according to all metrics) are obtained

with the maximum number of possible training samples

(i.e., column 100% in Table II);

• The mean values of the recall (= 100 - miss rate),

specificity (= 100 - false alarm rate), overall accuracy

and precision are greater than 98.94%, 98.44%, 96.97%

and 98.60%, respectively. The standard deviation of these

measures is always smaller than 1.57%, denoting a good

stability of the obtained results. These values indicate

that the proposed method can be confidently used to

effectively detect SLs.

To further prove the generalization capabilities of the

method, an additional experiment has been carried out. All

the samples of one of the labeled lakes have been used only

in the test phase, whereas the training has been performed

with 50% random samples of the remaining lake and non-

lake data. For this experiment we used for the test phase

the samples of lake 101, since its medium size length (i.e.,

≈ 8.7km corresponding to 289 samples) is sufficient for a

meaningful statistical analysis. The mean ± standard deviation

of the four accuracy metrics obtained by averaging the results

of 10 random training experiments are: recall = 98.33±1.21%,

specificity = 96.25± 0.1%, overall accuracy = 96.48± 0.05%

and precision = 76.93 ± 0.71%. These results confirm the

effectiveness of the method also when classifying samples

of new lakes that are not considered in the training of the

classifier.

In order to qualitatively asses the performance of the

method, the probability of SL presence on a subset of the test

samples (i.e., on lake 71) is provided in Fig. 7(f). Fig. 10(a)

shows another example of output, in which the reflections of

lake 101 appear at an along-track distance between 0-10km.

These results have been obtained by performing an experiment

using 50% of all labeled samples randomly selected for train-

ing and the remaining samples for test. For this experiment,

we obtained a recall of 99.88%, a specificity of 99.29%, an

overall accuracy of 99.49% and a precision of 98.64%. As one

can see, with few exceptions, the method provides a high/low

probability of SL presence on the reference lake/non-lake

samples, thus proving its effectiveness. The few exceptions

are mostly at the borders of the lakes, where the output is

more uncertain due to the sliding window approach. However,
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(a)

(b)

(c)

Fig. 10. Examples of LD radargrams, extracted features and estimated lake detection probability. Three radargrams are considered: (a) radargram 14 containing
the inventoried lake 101, (b) radargram 31 passing close to lake 57, and (c) radargram 36 which does not pass close to any inventoried SL. Where present,
the blue and red lines at the bottom of the radargrams correspond to azimuth locations of basal samples considered in the quantitative analysis, for training
and testing the SVM.



15

(a)

(b)

Fig. 11. Examples of SC radargrams, extracted features and estimated lake detection probability. Two radargrams are considered (a) radargram 29, between
the MacAyeal and Bindshadler Ice Streams, and (b) radargram 39 close to the C1 tributary of Kamb Ice Stream.

this is not critical for the goals of the proposed approach.

The high performance obtained on the reference samples

suggest that the proposed method can be effectively used to

confirm or accurately detect other potential SLs and update

the current SL inventory. To prove this, Fig. 10(b) and Fig.

10(c) illustrate two examples of radargrams, along with the

extracted features and the estimated SL detection probability.

In particular, Fig. 10(b) shows a radargram acquired near lake

57, which is located at a depth of about 3574m [16]. The

output of the method points out a SL, located at a depth

of ≈ 3550m, thus potentially lake 57. Fig. 10(c) illustrates

two relatively flat strong radar reflections, which extend over

several consecutive traces, visually resembling the appearance

of SLs. The behavior of the proposed features over these

regions indicates a great coherence and similarity with the

features over the reference lake interface shown in Fig. 7,

further suggesting the presence of the SLs. The output of the

SVM points out a very high probability of SL reflection, thus

supporting the presence of the hypothesized SLs.

In order to further validate the presence of such lakes, we

also performed an analysis of the results according to the water

ponding condition [59], [6]. The water ponding condition

relies on the Shreve hydrological model [20] that states that

subglacial water flows down the gradient of hydraulic head Hh

and ponds if the hydraulic head is nearly constant. This implies

that water ponds only in hydraulically flat regions. Assuming

that the water pressure is equal to the ice overburden pressure

(e.g., [6], [22], [59]), Hh is defined as:

Hh = 0.917 ·D + TBI . (18)

For the LD dataset, the bottom-right panels in Fig. 10(a),

10(b) and 10(c) illustrate the estimated lake detection probabil-

ities with blue-red colormaps as a function of hydraulic head

(right axis). The proposed method reports a high probability

of SL presence in correspondence of relatively flat hydraulic
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(a) (b)

Fig. 12. Output of the proposed method (blue-red colormap) for the (a) LD dataset, and (b) SC dataset. Also provided are the location of the investigated
radargrams (alternating white and grey colors), locations of the inventoried radar detected and active SLs (magenta dots and black polygons, respectively)
and locations of the reference lakes (yellow stars) overlapped on subglacial water routes (black) computed using the BEDMAP2 dataset [whose uncertainty
(from [57]) is depicted in green-yellow colormap]. Green arrows point the locations of other potential SLs detected by the proposed method. Annotated in
(a) are also some SLs present in the SLI, which are not confirmed by the visual analysis of the reflections in radargrams, therefore not used in the training
phase, but detected, thus confirmed by the method as interfaces with high probability to be SLs. The cyan ellipse in (b) marks a region, in proximity of the
locations with a high estimated probability of lake presence, in which a recent work [24] confirmed the existence of a distributed subglacial water sheet.

head, thus sustaining the hypothesis of SLs presence. It is

important to highlight that the water ponding condition is nec-

essary, but not sufficient for detecting SLs. Accordingly, basal

interfaces can obey the hydraulic flatness condition, without

being lake interfaces (this is evident in the bottom panel in

Fig. 10(b) which shows several hydraulically flat regions that

are not associated with SLs, neither by visually analyzing

their reflections in the radargram, nor by the output of the

method). Nevertheless, the hydraulic flatness has been widely

used in the literature for detecting candidate SL positions (e.g.,

[6]). Here we use it as an additional variable to assess the

performance of the method. This type of analysis has been

applied to both datasets. The output of the proposed method

suggests the presence of other SLs in the LD dataset. Such

results are not provided here for space constraints. However,

the locations of these lakes are marked with a green arrow in

Fig. 12(a).

For the SC dataset, two examples of radargrams are pro-

vided in Fig. 11(a) and Fig. 11(b), along with the extracted

features and the estimated SL probability as a function of

hydraulic head. In particular, Fig. 11(a) presents a radargram

in which the basal interface appears as a flat, relatively shallow

and strong reflector, which may be interpreted as a SL reflec-

tion. However, the method provides a very low probability of

SL presence, which agrees with the hydraulic (non)flatness

condition and with the expected geological setting in the re-

gion, i.e., the presence of unconsolidated sediments at the basal

interface [60]. As another remarkable example, Fig. 11(b)

illustrates a radargram acquired near the C1 tributary of Kamb

Ice Stream. The hydraulic head is relatively constant and the

output of the method suggests the presence of potential SLs,

in agreement with [24]. These examples prove the robustness

of the proposed method that, even if it was trained only with

samples from the East Antarctic Ice Sheet (LD dasaset), it

is able to accurately classify the basal interface in the West

Antarctic Ice Sheet (SC dataset).

An important observation regards the probabilistic nature

of the obtained results, which allows an objective assessment

of potential SL locations based on the amount of similarity

of the features with those of the reference data. This is

evident by analyzing Fig. 10(a), 10(b) and 10(c) in which

relatively flat, smooth, bright interfaces, characterized by a

high adjusted power (similar to that illustrated in Fig. 7)

have higher probability to be SLs than the interfaces with

variable topography, increased roughness and lower adjusted

peak power. This probabilistic nature of the method offers the

possibility to experts analyzing large RS datasets to quickly

retrieve only the basal locations with a certain probability

(from 0 to 100%) to be SLs. This is extremely important for

driving further analyses focused only on regions of interest.
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The output of the proposed technique along the entire

LD and SC flightlines is provided in Fig. 12(a) and 12(a),

respectively. The black lines represent the subglacial water

routes [61], estimated by using the BEDMAP2 data [57]. The

water routes and the estimated probability of SL presence

are overlapped on the estimated ice thickness uncertainty

(from [57]). The analysis of the figure points out that the

method provided a high probability of SL presence at several

flightline positions that intersect the subglacial water routes

or that are close to previously inventoried SLs in the LD

dataset. There are also some flightline positions for which

the method provided a high probability of SLs which do not

intersect the water routes or are far from the inventoried lakes.

However, these situations mainly correspond to locations for

which the estimated BEDMAP2 data show large uncertainties

(see Fig. 12), thus compromising the estimation of the water

routing. It is also worth recalling that the spatial sampling

of the BEDMAP2 data is 1km, whereas the spacing in the

azimuth direction of the MCoRDS dataset is 30m. This large

difference in spatial sampling prevents a fair comparison of the

obtained results with the water routing algorithm. Therefore,

this comparison can only provide an approximate qualitative

interpretation of the results at large scale, while it is unsuitable

for a precise quantitative validation of the method. However,

the qualitative analysis points out that the method i) in the LD

dataset confirms inventoried SLs and detects other SLs [see

Fig. 12(a)], and ii) in the SC dataset confirms the presence of

deformable sediments and of the subglacial distributed water

sheet detected in [24] near the C1 tributary of Kamb Ice

Stream [see Fig. 12(b)].

V. CONCLUSION

In this paper we presented an automatic technique for SL

detection in RS data. The main novelty of the method is the use

of a pattern recognition approach based on machine learning to

SL detection. As an advantage with respect to existing meth-

ods, this approach requires less human interaction, thus result-

ing in more objectivity and efficiency, enabling its application

to large RS datasets. The technique is made up of two main

steps. In the first step, features for characterizing the basal

interface and discriminating SLs from non-lake interfaces are

extracted. In order to capture the peculiarities of the SLs, the

feature extraction is performed locally on consecutive basal

waveforms. In particular, the features model locally i) the basal

topographic variability, ii) the shape of the reflected basal radar

waveforms and iii) the statistical distribution of the reflected

radar signal. In the second step of the technique, the features

are given as input to an automatic classifier based on SVM to

perform the SL detection and estimate the probability of SL

presence. Remarkably, the method depends on four parameters

only, i.e., the along-track and range dimensions of the basal

sequences (Nx and Ny , respectively), and the two parameters

of the SVM (penalty error term and width of the RBF kernel).

The first two depend on the expected minimum SL extent,

the discrimination capabilities of the features and the main

lobe width of the lake reflected waveforms. The other two are

estimated using a standard cross-validation procedure.

We applied the method to two different datasets acquired

by MCoRDS in Antarctica, in Lake District (LD) and Siple

Coast (SC) regions. Of all the inventoried lakes in the surveyed

regions, we validated the presence of four SLs, i.e., lake

71, lake 73, lake 101, and lake Vostok, all clearly visible

in the LD dataset. Samples from these lake interfaces and

from other non-lake interfaces were used as reference data for

training and testing the classifier. The qualitative analysis of

the behavior of the extracted features on the reference data

confirm the theoretical expectations, thus pointing out both

their effectiveness in characterizing SLs and their robustness

to subglacial attenuation effects.

The performance of the SVM for the automatic SL detection

has been validated both quantitatively and qualitatively. By

training the SVM with at least one quarter of the available

refence samples, we obtained a classification performance

greater than ≈97% according to four different metrics. These

results are satisfactory and confirm the validity of the pro-

posed approach. More importantly, they also suggest the

effectiveness of the method in the glaciological context, i.e.,

for detecting other potential SLs and update the current SL

inventory. Indeed, along the investigated RS flightline, besides

the locations of the reference lakes, the method provided

several locations with high probability of SL presence. The

output of the method at these locations has been validated

qualitatively with two approaches, i.e., by visually analyzing

the basal reflections in radargrams, and ii) by verifying the

hydraulic flatness condition. Both these approaches are in

agreement with the output of the proposed method. Moreover,

the method provided a high probability of SL presence at the

locations of lakes 174, 57 and 106, which were not used in

the training phase, thus further proving the effectiveness of

the method. Interestingly, although the SVM has been trained

with LD samples only, it provided reliable results also on

the SC samples. In particular, near the C1 tributary of the

Kamb Ice Stream, where a recent work claimed the presence

of subglacial water bodies [24], the method provided several

locations with a high probability of lake presence. A final

remark regards the additional information embedded in the

probabilistic output provided by the proposed method. Indeed,

the method objectively assigns a probability of SL detection

to each sample of the basal interface. This enables experts to

easily retrieve locations of interest, with high probability of

SL presence where to focus further dedicated analyses.

The obtained results suggest that the method can be an effi-

cient processing tool for the analysis and systematic detection

of SLs in large amounts of RS data. Thus, the method can

support the glaciological community to i) confirm the presence

of inventoried SLs in the analyzed datasets, ii) update the SL

inventory from available and upcoming RS surveys, ii) renew

previous estimates on the spatial distribution of SLs, their

impact on ice sheet dynamics and the probability of microbial

subglacial habitats.

As further developments, we aim to study the possibility of

extracting other features for basal interface characterization,

e.g., specularity content [23]. Moreover, we aim to further

validate and test the generalization capabilities of the proposed

method by training and testing the classifier with data acquired
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in other regions in both Antarctica and Greenland.
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