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 

 

Abstract—Relevant component analysis (RCA) has shown effective in metric learning. It finds a transformation matrix 

of the feature space using equivalence constraints. This paper explores the idea for constructing a feature metric (FM) and 

develops a novel semi-supervised feature selection technique for hyperspectral image classification. Two feature measures 

referred to as band correlation metric (BCM) and band separability metric (BSM) are derived for the FM. The BCM can 

measure the spectral correlation among the bands, while the BSM can assess the class discrimination capability of the 

single band. The proposed feature-metric-based affinity propagation (FM-AP) technique utilize an exemplar-based 

clustering, i.e. affinity propagation (AP) to group bands from original spectral channels with the FM. Experimental results 

are conducted on two hyperspectral images and show the advantages of the proposed technique over traditional feature 

selection methods. 

 

Index Terms—affinity propagation, band selection, feature metric, feature selection, hyperspectral images, relevant 

component analysis, remote sensing 

 

I. INTRODUCTION  

YPERSPECTRAL sensors acquire data simultaneously in hundreds of narrow and adjacent spectral 

channels [1]. This results in high potentialities for detailed land-cover classification but also involves 

several significant challenges to the classification process, such as: 1) the Hughes phenomenon (decrease of 
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classification accuracy by increasing the number of spectral channels due to the small ratio between number 

of training samples and number of spectral channels); and 2) the high computational time required for the 

analysis of large images [2]. As a result, it is necessary to reduce the number of channels to give as input to a 

classifier keeping the most informative features and removing redundant channels. Band (feature) selection 

techniques can be used for identifying a subset of discriminative and uncorrelated features for improving the 

classification result [3]. In general, a feature selection technique includes two main parts: a criterion function 

and a search strategy. The former measures the effectiveness of considered subset of features, while the latter 

is based on an algorithm that explores the space of solutions for finding a subset of features that optimizes the 

adopted criterion function [4],[5].  

The most effective feature selection techniques are those supervised, i.e. techniques that require the 

availability of a training set. However, true labels of samples (i.e., land-cover class labels) are expensive to 

achieve and thus it is difficult to define a reliable and complete training set. On the contrary, in many 

hyperspectral image classification problems, it is quite easy for a user to define pairwise constraints, e.g., 

indications on the fact that some pairs of samples may belong to the same class or not. Recently, learning 

distance functions with prior knowledge for semi-supervised learning applications have been studied [6-8]. 

Among these techniques, relevant component analysis (RCA) [6],[9],[10] is a relatively simple and efficient 

method for learning the Mahalanobis metrics in semi-supervised fashion. Unlike other methods, it utilizes 

prior knowledge expressed as equivalence constraints. In other words, it assumes to know that small groups 

of samples belong to the same class, but without knowing their labels. These small groups of points are 

termed as “chunklets”. 

The search strategy can also be considered as a process of feature clustering, which partitions features into 

similar groups based on the defined criterion function. An ideal search strategy finds features exhibiting both 

low correlation and high discrimination ability. Recently, an exemplar-based clustering algorithm, i.e. 

affinity propagation (AP), was proposed in the literature [11]. It takes as input similarities between data 

points and finds clusters with small error, especially for large data sets, with fast execution speed. It has been 
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applied to some different fields, e.g. face recognition, gene finding, remote sensing images, text mining 

[12]-[15]. 

In this letter, we propose to use the RCA to learn a whitening transformation matrix based on equivalence 

constraints with the goal of constructing the feature metric (FM). We consider two kinds of metrics, i.e. band 

correlation metric (BCM) and band separability metric (BSM) in the FM for measuring the spectral 

correlation and assessing the class discrimination capability. Then, the proposed FM is introduced into the 

AP, thus defining a novel semi-supervised band selection method, which is called feature-metric-based 

affinity propagation (FM-AP). The experimental results obtained on two hyperspectral image data sets point 

out the effectiveness of the proposed method. 

II. PROPOSED SEMI-SUPERVISED BAND SELECTION METHOD 

Let X = {x1, x2, …, xD}  
N×D

 a hyperspectral data set, where xi= {xi1, xi2, …, xiN}, D is the number of 

spectral bands, and N is the number of pixel points. Let Hk = {xk1, xk2, …, xknk
}, k=1,2, …,K,  be K chunklets, 

where nk is the number of points in the kth chunklet. The goal of feature selection is to find a subset of 

uncorrelated bands Y = {y1, y2, …, yd}, yj∈ X ,  (d<D) that can effectively discriminate the classes present in 

the data. 

A. Feature Metric 

In this section we first introduce relevant concepts related to relevant component analysis (RCA). Then the 

mathematical definition of the feature metric (FM) is given.  

In hyperspectral imagery, two pixels x1 and x2 can be defined to be related by a positive constraint when 

they share the same (unknown) label. If pixels x1 and x2 are related by a positive constraint and the same hold 

also for x2 and x3, then a chunklet {x1, x2, x3} is formed.  

Relevant component analysis (RCA) uses a whitening transformation based on the class covariance for 

rescaling the feature space. This gives the transformation W = VΛ
-1/2

, where V and Λ can be found by the 

singular value decomposition of the class covariance. 
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1) Chunklet scatter matrix 

It is straightforward to estimate the class covariance with labeled data. In RCA, an approximation of the 

class covariance can be calculated using chunklets assuming that the labeled samples are not available. The 

chunklet scatter matrix Sch is calculated by [7]: 

                                                               

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1                                                               (1) 

where Hk denotes the samples of the kth chunklet, ∪Hk = Ω; |Hk| is the size of the kth chunklet, and K is the 

number of chunklets. We look for a chunklet that achieves approximation of the mean value of a class, 

regardless of the size of the chunklet.  

2) Whitening transformation 

The whitening transformation W can be learned as follows: 

(i)  Compute the chunklet scatter matrix Sch. Let e denote the effective rank of Sch.  

(ii) Calculate the total scatter matrix of the original data, and project the data using principal component 

analysis (PCA) to its e largest dimensions.  

(iii) The chunklet scatter matrix Sch is projected onto a reduced dimensional space and the corresponding 

whitening transformation W can be computed.  

3) Feature metric 

The feature metric contains two measures: band correlation metric (BCM) and band separability metric 

(BSM).  

Band correlation metric (BCM) 

Band correlation metric (BCM) between two different bands xi = [xi1, xi2,…, xiN] and xj = [xj1, xj2,…, xjN] is 

expressed as: 

                                                           
1|),(|),(  jiji xxWxxBCM
                                                         

(2) 
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Band separability metric (BSM) 

The band separability metric (BSM) of the band xp= [xp1, xp2,…, xpN] is defined as: 

 

                                                       )),(()( 1

Min

Max
xxWFTSxBSM ppp  

                                                    (3) 

Dp ,,2,1   

where Max and Min are the maximum and minimum values of W(xp,xp), respectively. FTS (called Feature 

Threshold Scalar) is used to get the expected number of bands through setting appropriate values. 

The feature metric (FM) is computed based on the BCM and the BSM. By introducing the whitening 

transformation into the FM we can make use of the equivalence constraints to measure the effectiveness of 

each band. Thus FM can take into account both the correlation between all pairs of bands and the class 

discrimination capability of each band.  

B. Feature-Metric-Based Affinity Propagation (FM-AP)  

Affinity propagation (AP) was proposed as a technique for exemplar learning that aims to identify 

exemplars among data points and forms clusters of data points around these exemplars. Each exemplar is a 

data point that represents itself and the related cluster of the other data points. AP takes input measures as 

similarity between pairs of data points. In AP, a common choice for similarity is the negative Euclidean 

distance, even if more general notions of similarity can be used. The similarities may be positive or negative. 

According to the feature metric proposed in Section II.A, the BCM is the similarity between two different 

bands, and the BSM is the preference, which is the prior suitability to serve as a representative band. Thus, we 

introduced the developed FM into the affinity propagation (AP) algorithm as the criterion for band selection. 

The resulting technique is called feature-metric-based affinity propagation (FM-AP) band selection. 

AP is derived from factor graph which is constructed by net similarity. Different types of messages that 

need to be propagated in the factor graph can be reduced to two simple sets of messages that are iteratively 

updated until convergence. The two kinds of messages are responsibility r and availability a, and each takes 

into account a different kind of competition. 
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 The availabilities are initialized to zero, i.e. a(xi, xj) = 0. Then, the rules of availability and responsibility 

between two bands xi and xj are updated by using the max-product algorithm and are as follows: 
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The responsibility r(xi,xj), sent from band xi to representative band xj, indicates how well-suited the 

channel xi  would be as a member of the representative band xj. The “availability” a(xi,xj), sent from 

representative channel xj to its potential member band xi, indicates the capability of representative band xj to 

represent band xi. When the searching algorithm converges, a subset of optimal bands is obtained by 

calculating the set of positive a(xi, xi) + r(xi, xi) messages for each band xi. The use of simple updating rules for 

computing responsibilities and availabilities may result in undesired oscillations. Thus damping is commonly 

used in over-relaxation methods to avoid numerical oscillations. The two kinds of messages can be damped 

according to the following equations:  
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                                                                 (6)                                                                                                                                    

where R and A represent responsibility and availability vectors, respectively;  is the factor of damping 

(which should satisfy 0.5≤ <1), and  t is the number of iterations. Higher values of  involve slower 

convergence. The assignment of representative bands is done according to the following rule:  
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The procedure associated with the proposed FM-AP is as follows. 

Step 1 - Set initial values of exemplars and parameters 
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At beginning, we simultaneously consider all spectral bands to be initial clustering exemplars, i.e., 

representative bands (Y = X). At the same time, we set the chunklet information using the equivalence 

constraints. 

Step 2 - Calculate chunklet scatter matrix and whitening transformation 

In practical applications, we need to get the covariance matrix Cov(Hk) for estimating the chunklet scatter 

matrix, which is based on equivalence constraints only, and does not use any explicit label information. 

Accordingly, the covariance matrix of chunklet can be obtained as follows: 
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Then the chunked scatter matrix Sch can be obtained as: 
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Afterwards, data set is whitened with respect to the estimated within class covariance matrix. The whitening 

transformation assigns lower weights to the directions of large variability, as this variability is mainly due to 

within class changes and is irrelevant to the task of classification. The whitening transformation can be 

computed from Sch by using the following equation: 

 

2

1


 chSW                                                                           (10) 

Step 3 - Calculate the FM for all spectral bands 

FM is computed according to (2) and (3). 

Step 4 - Update responsibility and availability  
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Responsibility and availability are updated according to (4), (5), and (6). 

Step 5 - Identify the representative bands and their number 

This is done according to (7). 

Step 6: Convergence 

Repeat Steps 4-5 until the decisions for the representative bands and cluster boundaries are unchanged for 

some number of iterations.  

The subset of bands Y obtained at convergence is the final feature selection result. 

III. EXPERIMENTAL RESULTS 

A. Data Description 

The experimental analysis was done on the two different hyperspectral data sets described as follows.  

Hyperion data set 

The first data set is a subset of 250×566 pixels of a hyperspectral image acquired by Hyperion on February 

7th, 2004 in the urban area of Xuzhou city, Jiangsu Province, China. The original image contains 224 spectral 

channels with wavelength range from 356 to 2577 nm, where only 198 bands are calibrated. A set of 152 

bands was selected for our test after removing the bands which are uncalibrated, with corrupted strips or low 

image quality. We considered five classes, i.e., water, vegetation, woodland, built-up, and bareland, to 

characterize this area. The reader can refer to [16] for more details about this data set. 

AVIRIS data set 

The second data set is made up of a public AVIRIS image, i.e., Indian Pines 92AV3C [17] (145 × 145 

pixels and 220 bands) acquired on June, 1992 over the northwest Indiana’s Indian Pines. It is accompanied by 

a reference map, indicating partial ground truth. There are 16 land-over classes available in the original 

ground truth composed basically of different crop types, vegetation, and man-made structures. In our 
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experiments 200 bands were pre-selected in the data set after discarding the lower signal-to-noise (SNR) 

bands (104-108, 150-163, 220). As described in [18], only 9 out of 16 classes were considered as the 

remaining 7 classes were represented by very few labeled samples that do not make it possible a reliable 

statistical validation. 

B. Design of Experiments 

In order to assess the effectiveness of the proposed FM-AP technique, it was compared with the following 

band selection methods: i) variance-based band selection (maximum-variance principal component analysis, 

MV-PCA) [19]; ii) clustering-based band selection (standard AP based on the Euclidean distance, ED-AP); 

and iii) uniform band selection (Pearson correlation coefficient, PCC). We also compared the results with 

that obtained by using all the original bands (Baseline). It is worth noting that in order to have a fair 

comparison we did not consider supervised feature selection techniques in the experimental analysis. 

The performance of each band selection technique was evaluated by using the classification accuracy 

provided by the widely used support vector machine (SVM) classifier [20]. For comparing the performance 

of the four algorithms accurately, for Hyperion/AVIRIS data sets, we randomly selected 1980 /3990 samples 

as equivalence constraints (which are used for both FM-AP learning and SVM training) and 4253/5355 

samples as test data (which are used for accuracy assessment) from the available ground truth dataset. In 

order to have results statistically significant we repeated the process five times and reported the average 

results. The number of samples used as equivalence constraints and that of samples included in the test set are 

shown in Table I. The averaged overall accuracy is used to evaluate the results of the band selection.  
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TABLE I 

NUMBER OF PIXELS USED AS EQUIVALENCE CONSTRAINTS / CHUNKLETS AND INCLUDED IN THE TEST SET FOR THE HYPERION AND 

AVIRIS DATA SETS 
 

Data set Class 
Equivalence/ 

Chunklet 
Test set Total 

Hyperion 

Water 360/2 831 1191 

Vegetation 540/3 1110 1650 

Woodland 360/2 797 1157 

Built-up 540/3 1185 1725 

Bareland 180/1 330 510 

AVIRIS 

Corn-notill 630/3 804 1434 

Corn-min 420/2 414 834 

Grass/Pasture 210/1 287 497 

Grass/Trees 210/1 537 747 

Hay-windrowed 210/1 279 489 

Soybeans-notill        420/2 548 968 

Soybeans-min 1050/5 1418 2468 

Soybean-clean 210/1 404 614 

Woods 630/3 664 1294 

 

C. Results  

In this section, comparisons among the results provided by the proposed FM-AP and the MV-PCA, the 

PCC, the ED-AP, and the Baseline are presented and discussed. Fig.1 (a) and (b) present the averaged overall 

classification accuracy versus the number of bands selected by using the MV-PCA, the PCC, the ED-AP ( = 

0.85) and the FM-AP ( = 0.9) with the Hyperion and AVIRIS data sets, respectively. From Fig.1, one can 

observe that on the two considered data sets, the classification accuracies basically increased by increasing 

the number of the selected bands for the four methods. The FM-AP provided the highest accuracy 

performance compared with the MV-PCA, PCC, and ED-AP algorithms with the same number of selected 

bands. 

In the Hyperion data set experiments (Fig.1(a)), the proposed FM-AP obtained an average overall accuracy 

of 72.52% when 5 bands were selected. The classification accuracy increased to 86.48% with 8 selected 

bands. Then, it slowly increased close to 89% with 10 selected channels. It is worth noting that the proposed 

FM-AP achieved with 13 extracted bands better accuracy (90.16%) than the baseline (89.76%) with all 152 
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bands. This of course depends on the Hughes phenomenon. The MV-PCA yielded the lowest classification 

accuracy among the four considered methods. Although ED-AP achieved a few times higher classification 

accuracies than the PCC, its performance is unstable. On the contrary, the PCC generally achieved a good 

accuracy, although with slightly lower performance when selecting 7-10 channels.  

In the AVIRIS experiments (Fig.1(b)), the two clustering-based methods, i.e. the FM-AP and the ED-AP, 

obtained higher accuracies than the MVPCA and the PCC. However, the ED-AP decreased the classification 

accuracy when numbers of selected bands in the range between 9 and 18 were considered. In these conditions, 

the FM-AP exhibited much more stability. The classification accuracy obtained by selecting 18 channels 

with the FM-AP (75.99%) was higher than that achieved by using all 200 bands (75.56%). Similarly to the 

results obtained with the Hyperion data set, the MV-PCA obtained lower classification accuracy than the 

other three considered methods. The accuracies obtained with the PCC were slightly higher than those 

obtained with the ED-AP when the number of selected bands was higher than 16. Moreover, it was in general 

more stable versus the number of selected bands. 

  

(a) Hyperion data set (b) Indian Pines 92AV3C data set 

 MV-PCA                                                                                                         PCC  ED-AP         Proposed FM-AP Baseline 

Fig. 1. Averaged overall accuracy (on five trials) provided by the SVM classifier versus the number of selected bands obtained by 

the MV-PCA, PCC, ED-AP, and FM-AP methods with (a) Hyperion and (b) AVIRIS data sets. The results achieved by using all 

the spectral channels are also reported (baseline). 

 

In order to further analyze the effectiveness of the proposed method, we increased the number of selected 

bands for the four algorithms on the two data sets for comparisons. Tables II presents the results obtained on 
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both considered data sets. It can be seen that the proposed FM-AP technique still performed well in 

comparison to other approaches when the number of selected bands was further increased. However, as 

expected, the accuracy decreased by increasing the number of channels over a given value. 

TABLE II 

COMPARISON OF PROPOSED FM-AP METHOD WITH MV-PCA, PCC, AND ED-AP METHODS BASED ON AVERAGE OVERALL 

ACCURACY (%) WHEN SELECTED BANDS ARE IN THE RANGE 20-60 FOR BOTH DATA SETS 

 

Data set Selected bands MV-PCA PCC ED-AP FM-AP 

Hyperion 

20 72.82 87.51 82.42 89.23 

30 74.48 88.37 78.35 89.48 

40 75.59 88.83 80.12 90.21 

50 76.06 89.26 85.78 89.83 

60 76.55 89.95 83.27 89.57 

AVIRIS 

30 58.85 72.62 72.51 77.24 

40 59.27 73.28 73.13 77.67 

50 61.08 74.01 74.02 78.15 

60 62.73 75.62 74.12 78.04 

 

Furthermore, we compared the proposed FM-AP method with the Baseline using different (smaller) 

number of equivalence constraints on the two data sets. Table III presents the corresponding comparative 

performance with the average overall accuracy yielded by the FM-AP algorithms on the Hyperion and 

AVIRIS data sets. For the Hyperion data set, the proposed FM-AP achieved better accuracy (90.43%, 

89.83%, and 89.85%) with 19, 37, and 41 selected bands than the baseline (89.76%) when using 1320, 990, 

and 660 equivalence constraints, respectively.  

TABLE III 

COMPARISON OF PROPOSED FM-AP METHOD WITH BASELINE BASED ON AVERAGE OVERALL ACCURACY (%) WITH DIFFERENT 

(SMALLER) NUMBER OF EQUIVALENCE CONSTRAINTS FOR BOTH DATA SETS 

Data set Equivalence constraints Selected bands Overall accuracy 

Hyperion 

1320 19 90.43 

990 37 89.83 

660 41 89.85 

AVIRIS 

2660 26 75.91 

1995 48 75.62 

1330 45 73.83 
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For the AVIRIS data set, the classification accuracy obtained by selecting 26 and 48 channels with the 

FM-AP (75.91% and 75.62%) was higher than that achieved by using all 200 bands (75.56%) when using 

2660 and 1995 equivalence constraints, respectively. But when we chose 1330 equivalence constraints, the 

FM-AP did not increase the accuracy by the number of selected bands was over 41 and even lower than the 

Baseline. It can be due to the characteristic of the RCA, i.e. learning with limited equivalence constraints may 

provide unreliable and biased results, especially when the distribution are disequilibrium on the considered 

data. 

D. Parameters Sensitivity Analysis for FM-AP 

There are two user-defined parameters in the proposed FM-AP: , which affects the convergence speed; 

and FTS (Feature Threshold Scalar), which affects the number of selected bands. By increasing the  value 

the convergence probability increases, but we also increase the execution time (see Table IV). The 

comparison is performed on PC workstation, (Intel(R) Pentium(R) CPU P600 @ 2.13 GHz, 2.13 GHz with 

2.0 GB of RAM). 

TABLE IV 

EXECUTION TIME (S)  VERSUS THE α VALUE FOR THE PROPOSED FM-AP METHOD ON TWO DATA SETS (EQUIVALENCE 

CONSTRAINTS:1980 /3990 AND SELECTED BANDS: 13/18) 

Data set  Execution time (s) 

Hyperion 

0.75 78 

0.85 105 

0.95 119 

AVIRIS 

0.7 83 

0.8 112 

0.9 121 

For space constraints, we present here only a sensitivity analysis for FTS, as it is related to the quality of 

the detected subset of bands. We performed experiments by varying the value of FTS when running the 

FM-AP in the two considered data sets. From Fig. 2, one can observe that low values of the FTS resulted in 

the selection of many bands, whereas high values leaded to a small number of bands in all sampling 

conditions of the two data sets.  
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(a) (b)  

Fig. 2. Number of selected bands versus the value of the FTS parameter for the proposed FM-AP technique on: (a) Hyperion and (b) 

AVIRIS data sets. Curves with different color describe results obtained in each of the five random experimental trials. 

 

IV. CONCLUSION 

A novel semi-supervised band selection technique, i.e., Feature-Metric-Based Affinity Propagation 

(FM-AP), has been presented in this paper. The goal of the proposed technique is to make use of equivalence 

constraints (without assuming availability of class labels) to search a suboptimal feature set for improving the 

performance of hyperspectral image classification. The proposed FM-AP method takes advantage of the 

relevant component analysis to build a feature metric (FM) for assessing the class discrimination capability 

of each band and measuring the spectral correlation between bands. Then, based on the proposed FM, affinity 

propagation is applied to search a representative subset of spectral channels. Experimental results obtained 

on two hyperspectral data sets confirm the effectiveness of the proposed FM-AP, which provided high 

quality feature sets and overcame the Hughes phenomenon in a semi-supervised way. 

It is worth noting that the prior information used in the proposed FM-AP method is in the form of positive 

equivalence constraints. However, negative equivalence constraints may also contain useful information. 

Therefore, further work is tied to design a method capable to include both positive and negative equivalence 

constraints in the semi-supervised feature selection. 
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