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Abstract— This paper proposes a novel cost-sensitive aatianing (CSAL) method to the
definition of reliable training sets for the cldgsation of remote sensing images with Support
Vector Machines. Unlike the standard active leagr(iL) methods, the proposed CSAL method
redefines AL by assuming that the labeling cossahples during ground survey is not identical,
but depends on both the samples accessibility laadraveling time to the considered locations.
The proposed CSAL method selects the most infoxmaamples on the basis of three criteria: i)
uncertainty, ii) diversity, and iii) labeling costhe labeling cost of the samples is modeled by a
novel cost function that exploits ancillary dateclswas the road network map and the digital
elevation model of the considered area. In the gge@d method, the three criteria are applied in
two consecutive steps: in the first step the mostertain samples are selected, whereas in the
second step the uncertain samples that are diaa@ave low labeling cost are chosen. In order
to select the uncertain samples that optimize tiersity and cost criteria, we propose two
different optimization algorithms. The first algdmn is defined on the basis of a sequential
forward selection optimization strategy, whereas $econd one relies on a genetic algorithm.

Experimental results show the effectiveness ofpitopposed CSAL method compared to standard



active learning methods that neglect the labelgj.c
Index Terms —Active learning, automatic classification, groudalta collection, training set,

genetic algorithm, sequential forward selection, mote sensing.

l. INTRODUCTION

Generation of land-cover maps is one of the mostncon applications in remote sensing image
analysis and is usually achieved by supervisedbsifieation techniques. Such techniques require
the availability of reliable ground reference sagspto be used in the learning phase of the
classification algorithm. Reliability of the labdldéraining samples depends on both the quantity
and quality of the available samples. In remotesisgy the quality of samples is affected by two
main issues [1]: a) the capability to model thetigpaariability of the spectral signatures of the
land-cover classes, and b) the high spatial cdroeleamong the training samples collected in
neighboring locations of the same area (that resltlo® information conveyed by training samples
with respect to the case of independent samplésTfius, the collection of a sufficient number of
reliable labeled samples is time consuming, complexk costly in operational scenarios, and can
significantly affect the final accuracy of produdadd-cover maps.

To overcome the above-mentioned problems, actiaenieg (AL) methods have been
recently presented in the remote sensing literatlileey aim to optimize the definition of a
training set by selecting a minimum number of hegglality labeled samples on the basis of an
iterative process [2]-[11]. In other words, AL aglsithe collection of labels for non-useful (i.e.,
redundant) samples. This also leads: i) to redbeecomputational complexity for the learning
phase (thanks to the optimized training set witbmaall number of labeled samples), and ii) to
increase the classification accuracy (thanks toitmgroved class models estimated on a high

guality training set defined on the basis of thasslification rule of the considered classifier).



Most of the AL works presented in the remote senBterature select a batch of informative
samples at each iteration on the basis of two rodteria: 1) uncertainty, and 2) diversity of
samples. The uncertainty criterion is associatethéoconfidence of the supervised algorithm in
correctly classifying the considered sample, whetba diversity criterion aims at selecting a set
of unlabeled samples that are as more diverse ssly® to reduce the redundancy among them
[8]. An important drawback of most of the above-tmmed AL methods is the assumption that
the cost of labeling samples is equal for all taagles on the ground. This assumption may be not
appropriate for remote sensing problems. For tihheasons, AL methods presented in the remote
sensing literature do not fit well with the realpéipations constraints by assuming an uniform
labeling cost for all the samples on the ground.

In remote sensing, the labeling of the selectedpéesrduring AL process can be carried out
by i) in situ ground surveys (which are associated to high ca@¥tjmage photointerpretation
(which is cheaper, yet can be applied only in kditases), or iii) hybrid strategies (integratibn o
photointerpretation and ground surveys). It is wambting that ground surveys are mandatory
when detailed classes should be recognized. Thefapghe labeling process in this case is
generally high as a) traveling to locations of seéected samples is required to identify the land-
cover types of the related area on the ground,arebme geographical areas may be not easily
reachable in operational scenarios. Thus, the latelisition cost for each sampiesitu ground
surveys depends on the accessibility of the sampte also on the traveling time to reach the
related locations.

On the basis of these analyses, we can statehtbassumption that all samples have the
same labeling cost often does not hold in remotesieg problems, when the labeling of the
samples is carried out by in situ ground surveysortler to consider the labeling cost of samples
during the AL process, in this paper we presenb\aehcost-sensitive AL (CSAL) method to the

classification of remote sensing images by a Supgector Machine (SVM) classifier. Differently



from the AL methods presented in the remote serlgergture, the proposed method is defined on
the basis of the evaluation of three criteria:ngertainty, ii) diversity and iii) labeling costh&
proposed method defines the labeling cost witheetspo both i) samples accessibility and ii)
traveling time required to visit the selected saaplThe accessibility of the samples and the
traveling time between the samples are modeledsmguancillary data such as the road network
map and the digital elevation model (DEM) of th@sidered area. The proposed method assesses
the uncertainty of samples by the Multiclass Lévetertainty (MCLU) technique presented in [8]
(which proved to be effective for multiclass cléissition problems), whereas jointly evaluates the
diversity and cost of the samples by two differaigorithms. The first algorithm is defined on the
basis of a simple sequential forward selectiontefyg whereas the second one is based on a
genetic algorithm.

The paper is organized into seven sections. Setitigives background on AL and surveys
AL literature in remote sensing. Section Il debes the adopted techniques for the
implementation of uncertainty and diversity crigeeind introduces the proposed sample labeling
cost criterion. Section IV introduces the proposgdimization algorithms defined for the joint
evaluation of the diversity and cost criteria. 8wttV illustrates the considered data set and the
design of experiments, whereas Section VI showseiperimental results. Finally, Section VII

draws the conclusion of this work.

. ACTIVE LEARNING FOR REMOTE SENSINGIMAGE CLASSIFICATION

In this section, we recall the general definitionAd, and then briefly survey AL techniques
presented in the remote sensing literature.TUe¢ an initial training set with few labeled sansple
andU be a pool of unlabeled samples. AL techniquesatitezly enrich the initial training sdt by
selecting the subset of most informative unlabalaahples fromJ for the considered classifier.
Each iteration of AL consists of 3 steps: i) a hatcof informative unlabeled samples is selected

by a query function, ii) then these samples arel&bby a supervisor (who assigns the true class



labels to the selected samples) and added to thentdaraining sel and iii) finally the supervised
classifier is retrained with the expanded trairseg) This procedure is iterated until a stop dater

is fulf illed. When the AL process is completedg tinaining sefl includes a minimum number of
highly informative samples (i.e., optimized traigiset) for the considered classifier. To end, the
classifier is trained once more with the optimizedining set, and then the image under

investigation is classified [8].

The core of any AL method is related to the ados@aple selection strategy (i.e., query
function). The basic approach to the selectionhef most informative samples is to exploit an
uncertainty criterion. As mentioned before, theartainty criterion aims at selecting the unlabeled
samples that have the maximal uncertainty (i.e |dwvest confidence) on their correct class label
among all unlabeled samples. The most uncertaiplesnare the most beneficial to be included in
the training set due to the fact that they haveldiest probability to be accurately classified by
the considered classifier. Uncertainty of sampbeslze defined in different ways depending on the
considered classifier. In the remote sensing litwea several AL methods with different
uncertainty measures have been presented. For &amp4] the unlabeled sample that is closest
to the classification boundary of each binary SVMthe one-against-all (OAA) multiclass
architecture is considered as the most informaawel, thus included in the current training set at
each iteration of the AL process. An AL technighattselects the unlabeled sample maximizing
the information gain is presented in [5]. In thisrk, the information gain is measured by the
Kullback—Leibler divergence that is estimated betmwéhe posterior probability distribution of the
current training set and the training set obtaimechse of inserting each unlabeled sample, one by
one, into the training set. In [6], the Entropy Quéy Bagging (EQB) technique is proposed,
which assesses the uncertainty of samples accotdinge maximum disagreement between a
committee of classifiers. The disagreement amoagsdiers is measured by the entropy of the

distribution of the different labels (obtained bycammittee of classifiers). The samples with



maximum entropy are assigned as the most uncestanples. A cluster assumption based AL
method is presented in [7], which can overcomeptisblems related to the availability of biased
initial training sets. This method exploits a hggtam-thresholding algorithm to find out the most
uncertain region in the one-dimensional SVM ougpace.

It is important to note that the use of only anentainty criterion is effective to select one
sample at each iteration of AL, whereas it may ltesypoor performances in the case of choosing
a batch of samples due to the possible redunddmgly §imilarity) between the selected samples.
Thus, in order to select a batch of samples theyguection should assess also the diversity of
samples in addition to the uncertainty measurethicoend, AL methods that take into account the
two criteria (uncertainty and diversity) have beetently presented in the remote sensing
literature. For example, margin sampling by closegiport vector method is presented in [6]. This
method considers the smallest distance of eacltbeleld sample to the hyperplanes associated to
the binary SVMs in a OAA multiclass architecturetlas uncertainty value of this sample. Then, at
each iteration, the most uncertain unlabeled samnplkich do not share the closest support vector,
are added to the training set. In [8], differenichamode AL techniques based on both uncertainty
and diversity criteria for the classification offmete images with SVMs are presented. As an
example, the Multiclass-Level Uncertainty with Enbed Clustering Based Diversity (MCLU-
ECBD) technique is proposed which initially seletttie most informative unlabeled samples by
the MCLU strategy, and then assesses the divear§itiie most uncertain samples by a kernel-
clustering technique. Thk-means clustering in the kernel space is appliedh® uncertain
samples, and then the most uncertain sample of@aster is included in the training set at each
iteration of AL. The method presented in [7] is noyed in [9] by including a diversity criterion to
reduce the redundancy between the selected uncedanples. Here, the diversity of uncertain
samples is measured by using the same approagh as |

All the above-mentioned methods may achieve higissification accuracy, thanks to the



optimized training set with a small number of highiformative labeled samples. However, they
do not assess the cost of labeling of samples gluhie AL process. This may result in the
selection of samples that are geographically faedch other or difficultly reachable by the
supervisor, thus involving a high label acquisitioost. According to our knowledge, in the
literature only few methods that consider the ladmuisition costs during the AL process have
been proposed [10], [11]. These methods aim toaedhe cost measured by the distance traveled
during the labeling process. Accordingly, two vAoas of the methods are presented. The first
one selects the most uncertain samples and dd¢fireshortest path to travel among these samples
according to the traveling salesman problem. Tleers® one selects the samples that are closest to
each other among the most uncertain samples byidrpl traveling salesman problem with
profits (TSPP) [21]. Nonetheless, these method® lsme important drawbacks: i) a diversity
criterion is not considered in the selection prsc#ws resulting in the possible selection of
redundant samples; ii) the cost is modeled in arealistic way by ignoring the accessibility of
samples on the ground; and iii)the distance betvgaemples is calculated by a naive approach that
only uses the two dimensional Cartesian coordinagggecting both the altitude information and
the possibility to use different transportation resdi.e., foot or car) for moving from one sample

to another. Thus, these methods do not model atkdgule real applications constraints.

Ill. PROPOSEDMETHOD: CRITERIA FOR ACTIVE LEARNING

We propose a novel CSAL method that aims to seldmtch X ={x,, X,,...,x,} of h samples at

each iteration that are i) uncertain, ii) as moneese as possible to each other, and iii) cost
efficient. The proposed method is defined in thatert of SVM classification problems by
considering an one-against-all (OAA) architectufebmary SVMs for addressing multiclass
problems. The proposed CSAL method assesses tleetainty and diversity by using the MCLU
[8] and angle based diversity (ABD) [12] techniquesspectively, which have been previously

presented in the literature. Then, it introducesst criterion which is modeled by considering the



accessibility of each sample and the traveling tioedéween successive samples. In the next
subsections we briefly recall the MCLU and ABD teicjues and then introduce the proposed cost

criterion.

A. Uncertainty Criterion: Multiclass Level Uncertainfyechnique

The uncertainty of samples is assessed by usin/i®kU technique. This technique evaluates
the confidence valuee(x) of each unlabeled sampbeJU with respect to the OAA SVM
architecture, in which each binary SVM solves ajpgm defined by one information class against

all the others [13], [14]. The confidence valuéx) of each unlabeled sample is calculated
according to its functional distanc&(x), i =1,...r to ther decision boundaries of the binary

SVM classifiers included in the OAA architecturdnelconfidence value of each unlabeled sample

can be calculated using different strategies. Heeeuse the difference functiosy, (x) strategy
that proved to be very effective in [8]. Tlog, (X) strategy calculates the uncertainty between the

two most likely classes by considering the diffeeerbetween the first largest and the second

largest distance values to the SVM hyperplanes [8]:

Fymax = AFg Ma{ f; &}

i=1,2,..1r

Momax = . arg max {fl (( } Y
J7L2,08 A 1max

Carr (X) = f.(X)— 1 (X)

rl max

If the c,, (x) value is small, the sampleis very close to the decision boundary betweesscla

r and class.

1max 2max *

In this case, since the decision for this sangpl®ot reliable, it is considered
as an uncertain pattern. On the opposite, if¢hg(x) value is high, the sampleis assigned to

with high confidence and thus is not consideregdartant for the AL procedure [8].

rl max



B. Diversity Criterion: Angle Based Diversity Technéqu
The proposed CSAL method assesses the similarityhef uncertain samples by the ABD
technique. This technique measures the diversitgamiples on the basis of the cosine angle

distance, which is a similarity measure betweendamples defined in the kernel space [12]:

o)) - Kx.x,)
\coS(D @& ok, )))\ ax)ex)] KO x K, ;) 2
K (X5 %;)

O(ex).¢x;)) = cos’ )

(\/K(xi,xi)K(xj,xj)

where ¢()J] is a nonlinear mapping function from the origifedture space to a higher dimensional
space andK (LI) is the kernel function that implicitly solves tkhet product into the unknown

transformed high dimensional space. The cosineeadgtance in the kernel space can be

calculated using only the kernel functiét([1)] without direct knowledge of the mapping function
@} [12]. The angle between two samples is small (@sif angle is high) if these samples are

close to each other and vice versa.

C. Proposed Sample Labeling Cost Criterion
The proposed CSAL method models the labeling cbstach sample by considering both its
ground accessibility and the traveling time to tvthie sample. Thus, the samples that are easily
accessible (e.g., close to an infrastructure likeaa) and require the shortest traveling time,(i.e
are close to the previously visited samples) aresiclered as cost efficient (i.e., cheap) samples.
To assess the accessibility of the samples andasteof different trajectories associated with the
selection of a batch of samples, we exploit thel noetwork map and the DEM of the considered
area. Moreover, the requirements with respect ¢ouse of different transportation modes (e.g.,
foot or car) are also modeled.

It is worth noting that we model the cost of labglibatch of samples instead of that of

labeling only one sample, since we assume thasudbpervisor visits a batck of samples at each



iteration of the proposed CSAL method. The cossahple labeling can be defined in terms of
distance to be traveled by the supervisor or tiaken by the supervisor to visit the samples or
resources required by the transportation modes bgdtie supervisor (e.g., gas for car). In our

work, we express the cost in terms of time. Acawgtyi, the total labeling cosgt, i.e., the time, for
the batchX of h samples selected at thth iteration is defined as:

£ (X) = g+ (e (X) + e 3)
wheret™™ is the initial time to reach to the location oéftfirst sample being labeled at thth
iteration. t™™ is estimated a$"™ =d"™™ /v, whered™® is the traveling distance to the first
sample being visited and is the velocity of the considered transportatioodsn The estimation

of t"™* depends on the transportation mode used for mofrimg the final location of the

supervisor at the-1)-th iteration to that of the first sample beiabeled. If the traveling time by

car is shorter than that by foot, the supervisawvdls by car and vice versa. In case of travelyng b
foot, t™™ is estimated ag"™® =(d"™* /v,,), and it is not necessary to use the road network
map. However, in case of traveling by cdf)"™ is defined based on 3 distances: i) the distance
dT™ between the supervisor (i.e., his current locatamd the road point where the car is left
(this is done by foot), ii) the distanad’,™ from the initial road point to the final road pbin
closest to the sample to be labeled (this is dgneab), and iii) the distancd’y* from the final
road point to the sample being labeled (this isedoy foot). Accordingly,t™™ is estimated as
1™ = (AN Vi) + (A /v ) + (A5 1 \,,,) , Where the total traveling distance to reach the
first sample being labeled g™ = d7™ +d"%* + '3 .

travel

The traveling timet, ™" (X) required to visit all the samples K at thel-th iteration is

estimated ag/™(X) =d"™(X)/v. d"™°(X) is the shortest distance to travel betweentthe

10



samples and consists of the sum of the distandegsebe each pair of samples. The shortest path
to travel between the selected samples is estimegiag) the optimization algorithm presented in

[10]. Here, we assume that traveling between thehb&of samples can be achieved by foot, i.e.,

" (X) = d"™(X)/ v, wherev,, is the velocity of traveling by foot. This is aasmnable

assumption since selected samples can be mosy liteke to each other. However, it is

straightforward to reformulate the cost function bgnsidering a different assumption. The

labeling timet®'"™ is the time taken by the supervisor to assigrballto each sample at th¢h

iteration, and thug®**"™h is the total time for assigning labels to theamples.

The distance between two samples is always estimaiag also the altitude information of
the samples provided by the DEM of the considerigel is the Cartesian coordinates of the
samples (i.e., geographic distance). In additioa,distances to the closest road points are olotaine
by exploiting the road network map of the consideseea. Thanks to the road network map and
the DEM data the proposed method for the definittdnthe labeling cost, unlike techniques
proposed in [10]-[11], fits well with the real apgations constraints.

According to the proposed sample labeling costitedn, the samples that have the shortest
traveling time (those that are closest to eachrptred require the shortest time to reach the road
points (those that are easily accessible) are dereil as cost efficient samples. In order to better
understand this concept, Fig. 1 shows a qualitatkample. Note that, for simplicity, the example
is presented to visualize only the traveling rodtestwo different scenarios, which are related to
low labeling cost [Fig. 1.a] and high labeling c@Big. 1.b]) in the case of selection of three

samples. Thus, the uncertainty and diversity catare not considered in this figure.
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Fig. 1. The traveling routes defined by using theppsed sample labeling cost technique for twaedkffit scenarios
related to: (a) low labeling cost, and (b) highdig cost. A=initial location of the supervisokfihal location of the

supervisor. The locations being visited are givethe alphabetic order, a"™* = d"y* + d";* + ¢'s' and

travel _ ~ytravel travel
™ =d 7+ 45"

IV. PROPOSEDMETHOD: OPTIMIZATION ALGORITHMS

At each iteration, the proposed CSAL method is thase the evaluation of the uncertainty,
diversity and cost criteria applied in two conseausteps to select the batglof samples. In the
first step, them> h most uncertain samples are selected accordindh@¢ostandard MCLU
technique from a sd) of unlabeled samples, whereas in the second bepnbst diverse and
cheapesh samples among thegeuncertain samples are chosenX h>1).It is worth noting that
the three criteria can be also jointly optimizedowéver, it will significantly increase the
complexity of the estimations for the consideredap®eters. In order not to increase the
complexity, we propose to use two consecutive stapsordingly, we define a criterion function
made up of two terms: 1) a term that measuresitleesity of the samples in the batghand 2) a
novel term that evaluates the labeling cost ofitaehX. In order to optimize the two terms, we
propose two different algorithms that aim to fintfetent tradeoffs between quality of the solution
and computational time. The first algorithm achgtiee optimization on the basis of a sequential
forward selection (SFS) strategy, whereas the skooe relies on a genetic algorithm (GA). Fig.

2 shows the block scheme of the proposed CSAL ndetho
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U= _,| Uncertain Samples Xy X000y Xm}‘ Diverse and Cheapest 1Xv Xz Xx} _
{Xy Xppeen X} (by the MCLU Samples (either by "
technique ) SFS or GA)

Fig. 2. Block diagram of the proposed cost-sersiéigtive learning (CSAL) method.

A. CSAL Method Optimized by a Sequential Forward Hele&trategy (CSAL-SFS)

The first algorithm performs the optimization byingsa simple SFS strategy (CSAL-SFS). After
selecting then most uncertain samples according to the MCLU nuthioe uncertain samples that
optimize the diversity and cost criteria basedten$FS strategy are chosen. According to the SFS
strategy, the batcK is initially empty, and thé samples that are cheap and diverse to each other
are sequentially chosen among thauncertain samples. In this algorithm, the divgrsihd cost
criteria are combined by using a weighting paramdteOn the basis of this combination, a new

samplex, is included in the batcK at thel-th iteration according to the following optimizarti:

X, =argmin At (X )+ (-1 ) max K&.x,) (4)
i=L.m 50X K (%K (X% )

where A provides the tradeoff between cost and diver3ilye cosine angle distance between each
uncertain sample;, i =1,2,.m selected in the uncertainty step and the sampéhsded inX are
calculated and the maximum value is taken as terslty value of the sampbe (see the second
part of (4)). The cost (X), which is obtained in case of including the samplein X (i.e.,

X =X [0x,), is calculated by (3). Then, the sum of the ewst diversity values weighted by is
considered to obtain the combined valuexpr This value is calculated for each unlabeled sampl
selected in the uncertainty step. Then, the untgbshmplex, that minimizes such a value is

included inX. This process is repeated until the number of sasngfi¢he seKX (.e., |X|) is equal

13



to h. If the A value is large, the priority is given to the sélat of “cheap” samples, whereas if it
is small, the priority is given to the selectiondbferse samples.

It is worth noting that the first selected sampieXidirectly affects the successive samples
being selected, i.e., different solutionsXacan be obtained depending on the initial sampte. T
select the best solution with respect to the ili@ion, we propose to use an exhaustive search,

which aims to select each uncertain sample =1,2,..m sequentially as a first sample, and then
to assess the quality of thedifferent solutions tX, i.e.,{ X,, X,,..., X,} . To this end, a criterion
functionJ is defined. The criterion function value of tkéh solution J, (X, ) is computed as

3 (%) =A1(X) +(1-4)D(X) ()
where D, (X, ) is the diversity value of the batck, that is calculated by exploiting the average of

angle based distances computed in the kernel dgeeen each pair of samplesX) (see (2))

as
h K(X,X:)
D S 6
()= - 1)§J;1¢K(xi,xi)+<(xj,xj) ©
Then, the final batcK is selected as that which minimizes (5), i.e.,
min {3, (X} 7)

The labeling of the batchX of samples can be done by establishing a link éetwthe
classification system and the human expert on thangl. To this end, a connection to a remote
server that provides geographical coordinates efsdimples selected by the AL algorithm and a
GPS should be available during the ground surveyn(alternative the AL algorithm can be run
on a Laptop available on site during the groundadadllection). After manual labeling, the
selected samples are added to the current set.

This procedure is iterated until the desired numifesamples is labeled, i.e., the upper

bound of the cost for labeling samples is achieVéden the AL process is completed, the image

14



is classified by the considered SVM classifier.sTisi done by training the classifier with the final
training set obtained at the end of the AL procésgeneral AL iteration of this method to select
the batchX of h samples is summarized in Algorithm 1. It is wontbting that even if we use an
exhaustive search in the initialization step, tf& Strategy cannot guarantee to find the optimal

solution at each iteration as it does not consaagrbacktracking option.

Algorithm 1: CSAL-SFS

Inputs:

A (weighting parameter that tunes the tradeoff betwdiversity and cost)
m (number of samples selected on the basis of tineentainty)

h (batch size)

Output:

X (set of unlabeled samples to be included in thaitrg set)

1. Initializek=1.

2. Computec(x) for each sample U .

3. Select the set om unlabeled samples with the lowes{x) value (most uncertain)
{Xp Xopoees X} -

Repeat

4. Initialize X, to the empty set.

5. Include in X, thek-th most uncertain sample.

Repeat
6. Compute the combination of diversity and coshw4)
7. Include the unlabeled sampgl|ewhich minimizes (4) irK.
Until |Xk| =h
8. k=k+1
Until k=m
9. Select the batck that minimizes (5) with (7).
10. Add the labels to the set of samp]gs x,,...,X,} 0 X and include them in the current training
setT.

B. CSAL Method Optimized by a Genetic Algorithm (C&®)-

The second algorithm aims to improve the qualitythed solution by optimizing the proposed
CSAL method with a GA (CSAL-GA). GAs start with eedefined number of randomly generated
initial solutions (i.e., chromosomes) and evolve ititial set of solutions (i.e., initial populatip

by: i) mutation; ii) cross-over; and iii) selectioperations [16]-[18]. The crossover operation aims

to generate new solutions by defining strategiesi¢oge already available solutions, whereas the

15



mutation operator creates a new solution from esgtle solution independently from the other
available solutions. After producing new solutiaiher by mutation or by cross-over operations,
the best solutions are selected in the selectep, sthereas the worst solutions are removed from
the population. A fitness function is adopted tesess the quality of solutions. The process is
repeated until a stopping criterion is satisfiethe Treader is referred to [16]-[18] for detailed
information on the GA theory.

In the CSAL-GA, after selecting the set of most uncertain samples by the MCLU
technique, the GA is adopted to select the optinhatth X of h samples that optimizes the

aggregation of the diversity and labeling costetid@ as in (5). This algorithm includes 3 main
steps: i) initialization ofn solutions{xl, XZ,...,Xn} by n times randomly selecting samples
amongm samples; ii) generation of new solutions usinyegitcrossover or mutation operations,

resulting in 2 solutions; and iii) elimination of the worst solutions by selecting the best

solutions.
Let {X,, X,,...,X,} be an initial set of solutions (i.e., initial populati), where thek-th
solution X, is made up oh samples selected randomly amongrtheost uncertain samples. The

proposed method initially creates a setroiew solutions by either crossover or mutation
operations. In crossover operation, two solutioms eandomly selected from the current

population; then a new solution is generated bgctiely samples from these solutions and by

merging them. Let X, ={x{, X3,....x;} and X_ ={x},x}...,xf} be two randomly selected
solutions (i.e., chromosomes) from the populatiimee new solutionX, is generated by selecting

r samples fromX, and f-r) samples fromX, o

i.e., X, ={x'1‘,x‘:,...,x:‘,xlp,xzp,...xp } The
samples fromX are chosen randomly, whereas theheap and diverse to each other samples are

selected among thein X, . To this end, the criterion function values foe il possible different

16



combinations ofr samples are estimated by (5), and the batclh sémples which has the
minimum criterion function value is selected.

In the mutation operation, a new solution is crédtem each solutionX,, k=1,2,...n.
This is done by removing the weakest sample firgmand inserting another sample (instead of

the weakest sample), which is randomly selectenh filoe set oim most uncertain patterns that

were not included inX, beforehand. In order to find the weakest sampbghesample
x,OX,, 1=1,2,...h, is sequentially eliminated fronX,, and then the criterion function value is

estimated by (5). The sample for which the criterionction value is minimum is considered as
the weakest sample.
After generatingh new solutions by either mutation or cross-overragiens, the criterion function
value of each solution is calculated; then in thlecion step the best solutions that minimizes
(5) are kept, whereas those having the highesermit function values are discarded. The
operations of mutation, crossover and selectionitarated until a stopping criterion is fulfilled,
which is achieved when a solutidhis found as the best solution within a predefinedhber of
iterations. Once the stopping criterion is satifithe samples iX are added to the training set
after manual labeling. This procedure is iteratetll uhe desired number of samples is labeled,
i.e., the maximum cost for labeling samples is nedc When the AL process is completed, the
image is classified by the considered SVM classifi®lgorithm 2 summarizes a single AL
iteration for the CSAL-GA.

It is worth noting that the capabilities of GA tapdore the space of solutions in general

results in selecting samples with a better qu#ign those identified with the SFS algorithm.
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Algorithm 2: CSAL-GA

Inputs:

A (weighting parameter that tunes the tradeoff betwdiversity and cost)
m (number of samples selected on the basis of tineentainty)

h (batch size)

Output:

X (set of unlabeled samples to be included in thaitrg set)

1. Computec(x) for each samplec[JU .
2. Select the set oh unlabeled samples with lowe(x) value (most uncertair{)X,, X,,..., X} -

3. Createn different solutiond X,, X,,...,X,} (each solution includessamples randomly selected

from the set om most uncertain samples).

Repeat

4. Perform the mutation or cross-over operationgéate the new solutions.

5. Compute the criterion function value of eactusoh with (5).

6. Select the solutions which minimize (5).

Until a solution X is selected as one of the best solutions durinyealefined number of
iterations.

7. Add the labels to the set of samp{es X,,...,X,;} 0 X and include them in the current training
setT.

V. DATA SET DESCRIPTION AND DESIGN OF EXPERIMENTS

A. Data Set Description

Experiments were conducted on two multispectralgesa The first data set is an image acquired
by the Quickbird multispectral sensor on the cityTeento (Italy) in October 2005 (see Fig. 3).
The selected test site is a section of 2066x31¥€lpwith a spatial resolution of 0.7 m, and thus
the size of the considered area of 1446x2170 m.ridp of main roads and the DEM of the
considered area (see Fig. 3) are available to stkessample labeling cost. In order to show the
performance of the proposed method for a larges, dhee experiments were also carried out by
assuming that the pixel spatial resolution is 7 mtlee ground when calculating the distance
between the samples. This changes completely tlatiores between the different variables
considered in the AL process and thus defines blgmo which is significantly different form the
first one. Accordingly, the simulated area is 14460700 m. Thus we have two scenarios. In the
first scenario (Scenario 1) each pixel of the ime&geonsidered as associated to an area on the

ground of 0.7 m, whereas in the second one (Sae@amach pixel of the image is considered as
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associated to an area on the ground of 7 m. Thdable ground reference samples (5785
samples) were randomly divided to derive a valaatsetV of 195 samples (which is used for
model selection), a test SESof 2902 samples (which is used for accuracy assss3, and a pool
of 2688 samples. The 2% of the samples of eack aidhe poolare randomly selected as initial
training samplesl and the rest are considered as unlabeled sarupldsible |1 shows the land

cover classes and the related number of samplésiusiee experiments.

(c)
Fig. 3. Trento Quickbird data set: (a) true colomposite, (b) map of the main roads and (c) DENhefconsidered
area.

TABLE |. NUMBER OF SAMPLES OFEACH CLASS IN THEINITIAL TRAINING SET (T), THE UNLABELED
SAMPLE SET (U), THE VALIDATION SET (V), AND THE TESTSET (TS
FOR THETRENTOQUICKBIRD DATA SET

Land-cover T U Vv TS
classes
Water 8 383 28 531
Asphalt 12 565 42 602
Field 14 659 49 732
Forest 18 802 60 820
Bare soil 5 222 16 217
Total 57 2631 195 2902
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The second data set is a multispectral image aadjby the GeoEye system on a larger area of the
city of Trento (Italy) than in the previous caseSaptember 2011 (see Fig. 4 ). The map of main
roads and the DEM of the considered area (seedlrigre available to assess the sample labeling
cost. The available ground reference samples (16@itples) were randomly divided to derive a
validation setV with 231 samples, a test SESwith 8210 samples and a pool with 7638 samples.
The 0.8% of the samples of each class in the peolaandomly selected as initial training samples
for a total of 63 samples, and the rest are corsibdas unlabeled samples Table Il shows the

land cover classes and the related number of sampk in the experiments.

__(b)
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(c)
Fig. 4. Trento GeoEye data set: (a) true color amsiip, (b) map of the main roads and (c) DEM of ¢hasidered
area.

20



TABLE Il. NUMBER OF SAMPLES OFEACH CLASS IN THEINITIAL TRAINING SET (T), THE UNLABELED
SAMPLE SET (U), THE VALIDATION SET (V), AND THE TESTSET (TS FOR THETRENTOGEOEYE DATA SET

Land-cover T U Vv TS
classes
Trees 12 1525 45 1635
Fields 13 1595 47 1630
Asphalt 12 1488 44 1575
Water 4 490 14 609
Shadow 7 870 26 1035
Buildings 13 1616 48 1726
Total 62 7579 228 8210

B. Design of Experiments

In our experiments, we used an SVM classifier viRidudial Basis Function (RBF) kernel
[14]. The values for the regularization paramé&emnd the spreagt of the RBF kernel parameters
were chosen performing a grid-search model selecidy at the first iteration of the AL process
as suggested in [8].

In our experiments, the velocity of traveling byfavas set to 6 km/hours, whereas that of

traveling by car was fixed to 50 km/hours. In ambohif t was set to 2 minutes. The valuenof

labeling
(number of samples selected in the uncertainty) stes selected equal to 80, whereas the value of
h (number of samples being selected at each iterafiéiL) was chosen equal to 5. The value of

A was varied asl =0.2,0.5,0.% All the distances are estimated by the Euclidean distaetween

the samples. The shortest distandg,, required to travel between the selected samples is

initial

estimated using the optimization algorithm presente[10], [20]. The distance,’,” (from the

initial road point to the final road point closéstthe sample being labeled) is estimated using the
method presented in [15]. The valuernofor the GA (the number of initial solutions) ist ggjual
the value ofm. The stopping criterion for the CSAL-GA achieved when the same solution is
selected as one of the best solutions during #telderations.

We compared the proposed CSAL-SFS and CSAL-GA with state-of-the-art AL

techniques, i.e. the MCLU-ECBD [8] technique ane $patially cost-sensitive AL technique [10].
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M Initial location of the car

W Final location of the car

W Initial location of the supervisor
W Selected samples

W Traveling path

& Map of the main road

_|DEM

Radraw J

Spectral signature

Wavelength

Fress next to continue

Fig. 5. Developed user interface, which shows theeling route defined by using the proposed CSAA 1@ethod

together with the selected five samples on the Kirid data set. red circle=initial location of teapervisor; green
cross=final location of the supervisor; yellow &&x selected samples; blue line: the path to Hlewed by the

supervisor.

The MCLU-ECBD technique is implemented by initialglectingm most uncertain samples by
the MCLU technique, and then choosingliverse samples among thesamples by the ECBD
technique. In order to implement the method in [10¢ MCLU technique is used for the selection
of them uncertain samples, and then the TSPP is applidtes® samples for the selection oflthe
cost sensitive samples as in [10]. This methoceisoted as MCLU-TSPP in the experiments. It is
worth emphasizing that the MCLU-ECBD technique cd@&s the uncertainty and diversity
criteria, whereas the MCLU-TSPP includes the umagaty and cost criteria. We also compared the
results with random sampling method that seleatssimples randomly at each iteration without

exploiting any AL criterion.
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All experimental results are referred to the averagcuracies obtained in ten trials
according to ten initial randomly selected traing&gs. Results are reported as learning rate gurves
which show the average classification accuracy ugeli$ the total time (i.e., cost of sample
labeling) spent during the collection of grounderehce data, and ii) the number of labeled
samplesFor a fair comparison, the total time was calcuatsing the proposed labeling cost
method for all the methods used in the experiments.

The experiments were done by implementing the megdechnique in a Matlab software
tool having the interface shown in Fig. 5. The fegshows an example of the traveling route
defined by using the proposed CSAL-GA method amdsiected samples on the Quickbird data

set together with the initial and final locatiorfetee supervisor for one AL iteration.

VI. EXPERIMENTAL RESULTS
We did different kinds of experiments aimed tgoérform a sensitivity analysis with respectto
values, and ii) compare the effectiveness of tlopased CSAL-SFS and CSAL-GA between each

other and also with the MCLU-ECBD and the MCLU-TSeehniques for both data sets.

A. Sensitivity analysis to differenit values

We analyzed the performances of the CSAL-SFS amC®AL-GA versus the value of. As an
example, Fig. 6 and Fig. 7 compare the overall i@es versus the labeling time (i.e., the cost)
obtained by the CSAL-SFS and the CSAL-GA for thec®hird data set (both scenarios) and the
GeoEye data set, respectively. From the figures, @an see that selecting higher valuesiof
results in better classification accuracies compévehose obtained by small values/bffor both
scenarios. This is due to the fact that smAllvalues result in the selection of more diverse
samples with the possible drawback of increasimg tiThis behavior is more evident in the case
of the second scenario of the Quickbird and theEyealata sets for both the CSAL-SFS and the

CSAL-GA (see Fig. 6.b, Fig. 6.c , Fig. 7.b and Figc). As an example, the CSAL-GA with
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A =0.8 provides an accuracy of 92.05% when 10 hours peatsfor the collection of ground
reference data, whereas the accuracies obtaineithedoygame method in the same time when
A=0.2 and A =0.5 are 89.06% and 90.03%, respectively (see Fig. Thus, the value of the
parameterA defined by the user is crucial. Another intereggtobservation is that using high
values ofA leads to a faster convergence than when usingd salaks of A . Note that the reason
of achieving higher accuracies with the proposedméthod compared to the case of using the
whole pool as training set is related to the presewsf noisy samples (or outliers) in the pool.
These samples do not properly model the distributibtest pixels. It is worth nothing that an
outlier is expected to be assigned to a wrong dgigke classifier with high confidence (i.e., with

low uncertainty); accordingly, it is not selected an uncertain sample by the proposed AL

method.
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Fig. 6. Average (on ten trials) overall classifioataccuracy (in %) versus the total labeling tiol#ained by the
proposed CSAL-SFS method for different valuesoffor (a) the first scenario of the Quickbird dat, 4b) the
second scenario of the Quickbird data set, anthc)GeoEye data set. The dashed line “All trairsagiples” shows
the accuracy obtained including all unlabeled saspi the training set after manual labeling.
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Fig. 7. Average (on ten trials) overall classifioataccuracy (in %) versus the total labeling tiol#ained by the
proposed CSAL-GA method for different values &f for (a) the first scenario of the Quickbird dat, gb) the
second scenario of the Quickbird data set, anthé&)GeoEye data set. The dashed line “All trairsgagples” shows
the accuracy obtained including all unlabeled sas\pi the training set after manual labeling.

It is worth noting that the effect of is opposed in the case of comparing the classiica
accuracy versus only the number of labeled sanipleseglecting the labeling time. As examples,
for the Quickbird data set, Fig. 8 and Fig. 9 shine results obtained by the CSAL-SFS and
CSAL-GA, respectively, varying thd values. From the figures, one can observe thaCH#&L-
SFS and CSAL-GA select smaller number of sampldsettabeled when small values #f are
considered for both scenarios. This is due to #oe that smalll values provide the selection of
more diverse samples, which results in the needdliel a smaller number of samples to reach
convergence. As an example, the CSAL-SFS reachex@macy of 92.19% with 102 samples
when A =0.2, whereas the accuracies obtained with the saméeuof samples whed =0.5
and A =0.8 are 90.92% and 89.30%, respectively (Fig. 8.bjhincase of CSAL-GA, the results
obtained whem =0.2 and A =0.5 are very similar to each other, and outperforns¢hobtained

when A =0.8. For the Quickbird data set, Table Ill and Tablereport the labeling time (in
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hours) and the number of labeled samples for agtgesimilar accuracies with respect to different
A values obtained by the CSAL-SFS and CSAL-GA, retspely. From the tables, one can
observe that in the casesrhall values ofd the time taken by both the CSAL-SFS and the CSAL-
GA is large (due to the priority in the selectiohsamples having high distance among them)
while the number of labeled training samples islEnaOn the other hand, increasing thevalue
results in a shorter time even if more sampleslaveled (due to the priority in the selection of
samples that are closer to each other). This asajgnificantly shows that focusing only on the
number of labeled samples for assessing the efeaetss of AL techniques can be misleading.
The inclusion of the cost of labeling term (expegssn time) points out that in operational
application it can be more convenient (i.e., fgsterlabel a larger number of samples that are
close each other than a smaller number of sampégsate far each other. It is worth noting that
the same behavior is also observed in the reshitsred for the GeoEye data set (not reported for

space constraints).
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Fig. 8. Average (on ten trials) overall classifioataccuracy (in %) versus the number of labeledpdes obtained by
the proposed CSAL-SFS method for different valued dfor (a) the first scenario and (b) the second aderof the
Quickbird data set. The dashed line “All trainingngples” shows the accuracy obtained including albbeled
samples in the training set after manual labeling.
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TABLE Ill. LABELING TIME (IN HOURS) AND NUMBER OF LABELED SAMPLES TAKEN FOR OBTAINING
SIMILAR ACCURACIES BY THECSAL-SFSTECHNIQUE WITH RESPECT TMIFFERENT A VALUES FOR THE
FIRST SCENARIO OF THEQUICKBIRD DATA SET

Scenario 1 Scenario 2
A Time | Samples| AccuracyTime| Samples| Accuracy
0.2 16 162 94.22 101 142 94.1Q
0.5 13 167 94.27 74 152 94.03
0.8 7 217 94.31 37 242 94.09

TABLE IV. LABELING TIME (IN HOURS) AND NUMBER OF LABELED SAMPLES TAKEN FOR OBTAINING
SIMILAR ACCURACIES BY THECSAL-GATECHNIQUE WITH RESPECT T®IFFERENT A VALUES FOR THE
SECOND SCENARIO OF THEQUICKBIRD DATA SET

Scenario 1 Scenario 2
A Time Samples| Accuracy Time | Samples| Accuracy
0.2 13 162 94.39 86 162 94.27
0.5 8 152 94.28 42 148 94.38
0.8 7 217 94.21 33 207 94.28

B. Comparison among the Proposed and the Literaiethods

In this sub-section we carried out two sets of expents. On the basis of the analysis done in the
previous subsection, here we compared the accsraeisus only the time (i.e., the cost). In the
first set of experiments, we compared the effeass of the proposed CSAL-SFS and CSAL-GA
between them. Fig. 10 shows the overall accura@esus the time obtained by the CSAL-SFS
and the CSAL-GA for both scenarios of the Quickbddta set and the GeoEye data set,

respectively. In the figure, we reported the higlee®rage accuracy obtained with the best values
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of the parameterd . For the first scenario of the Quickbird data s#te highest accuracies for
CSAL-SFS are obtained with = 0.8, whereas those for CSAL-GA are obtained fox0.5. For
the second scenario of this data set and the Geddigeset, the highest accuracies for both CSAL-
SFS and CSAL-GA are obtained whdr=0.8. For both data sets, one can observe thal 3#d. -

GA provides a more effective selection of samptesitthe CSAL-SFS. In other words, it achieves
slightly higher accuracies with the same cost (@ $ame accuracy with less cost). On the
contrary, the CSAL-SFS results in a slightly lowemputational complexity than the CSAL-GA.
In our experiments, for the Quickbird data set tmenputational time taken for a single AL
iteration from the CSAL-SFS is 7.79 seconds, whetbat required by the CSAL-GA is 9.27
seconds. For the GeoEye data set, the computatiomaltaken for a single AL iteration from the
CSAL-SFS is 16.95 seconds, whereas that requiratidofCSAL-GA is 24.48 seconds (note that
this time significantly depends on the choice oé tBA parameters). Nonetheless, this time
difference between the techniques is very small both are suitable to be used on a real
operational scenario where these computation taresegligible when compared with the sample

labeling time i(e., cost) .
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Fig. 10. Average (on ten trials) overall classifioa accuracy (in %) obtained by the proposed nethgsing (a) the
first scenario of the Quickbird data set, (b) thead scenario of the Quickbird data set, andhg)3eoEye data set.
The dashed line “All training samples” shows theusacy obtained including all unlabeled sampleth@training set
after manual labeling.
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Finally, we compared the proposed CSAL-SFS and GSALwith the state of the art AL
techniques, i.e., the MCLU-ECBD [8], the MCLU-TSPIR®] and also with the random sampling.
Fig. 11 shows the average overall accuracies veéhgutabeling time obtained for both scenarios
of the Quickbird data set and the GeoEye datarespectively. In the figure, we only report the
results obtained by the CSAL-GA only, due to itghtar classification accuracies compared to the
CSAL-SFS. By analyzing the figure, one can obsdhat the CSAL-GA leads to the highest
accuracies for all the iterations and significardlytperforms the MCLU-ECBD and the MCLU-
TSPP methods for both data sets. As an exampl#heofirst scenario of the Quickbird data set,
the CSAL-GAprovides an accuracy of 94.96% when 10 hours aeatsfor the collection of
ground reference data, whereas those obtained d&yMGLU-ECBD, the MCLU-TSPP and
random sampling under the same time, are 92.63%9892 and 90.21%, respectively (see Fig.
11.a). Moreover, the CSAL-GA provides an accuratp466% spending only 7 hours for the
label collection process, whereas the MCLU-ECBD #redMCLU-TSPP methods require 20 and
14 hours to achieve a similar accuracy, respegtiyeée Fig. 11.a). The accuracy differences
between the proposed the CSAL-GA and the other odettare higher in the case of second
scenario of the Quickbird data set and the Geokta det (see Fig. 11.b and Fig. 11.c). For
example, the CSAL-GA provides an accuracy of 9205pending only 10 hours for the label
collection process, whereas those obtained by the WAECBD, the MCLU-TSPP and random
sampling in the case of the same are 89.02%, 85#&09637.01%, respectively (see Fig. 11.b).
Another important result is that the CSAL-GA reaslkenvergence with smallest labeling time for
both data sets. In greater details, for both dets the proposed CSAL-GA is more effective than
the MCLU-TSPP, which is one of the few cost basédnfethod presented so far in the remote
sensing literature. The higher performance of theppsed CSAL-GA with respect to MCLU-
TSPP relies on: i) considering the diversity crdrr and ii) modeling the cost in a more reliable

way taking into account real application constilby considering the requirement to use
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different transportation modes and by exploiting toad map and DEM data). Moreover, the
proposed method significantly outperforms the MCEGBD due to the fact that the latter does
not consider any cost criterion for the selectidrthe samples. Note that also in this case the
reason of achieving higher accuracies with the Adéthnds compared to the case of using the

whole pool as training set is related to the presei noisy samples (or outliers) in the pool.
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Fig. 11. Average (on ten trials) overall classifica accuracy (in %) obtained by the CSAL-GA, th€ MU-ECBD,
the MCLU-TSPP and random sampling methods usingh@first scenario of the Quickbird data set, tfi® second
scenario of the Quickbird data set, and (c) theEyeodata set. The dashed line “All training sanmp&®ws the
accuracy obtained including all unlabeled sampigbé training set after manual labeling.
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VIl. DiscussioN AND CONCLUSION

In this paper, we have presented a novel costisengil (CSAL) method to the definition
of effective training sets for the classificatiohremote sensing images with SVMs. The proposed
CSAL method evaluates the uncertainty, diversitgl aast criteria in order to select a batch of
most informative samples to be labeled and includebe training set. The uncertainty of samples
is assessed by the MCLU technique, whereas thesitiveas measured based on cosine angle
distances between the samples. In the proposeddidtie sample labeling cost is expressed in
terms of time and defined using a novel methods Thethod models the cost according to both
samples ground accessibility (e.g., time requiedeach to an infrastructure like a road) and
traveling time between the samples. We take intowat the use of different transportation modes
with different properties (e.g., foot or car) foroming from a sample to the other in the
computation of the cost. To this end, the road raag the DEM of the considered area are
exploited. It is worth noting that, thanks to th&Nd (that provides the altitude information in
addition to the two dimensional Cartesian coordisaif the samples), the geographic distance is
calculated between the samples. Moreover, thankbegaoad map, the traveling distances are
reliably estimated taking into account the pregigsition of the road.

In order to evaluate the above-mentioned threerait(i.e., the uncertainty, diversity and
cost), a two steps procedure is adopted in therp@pe first step is devoted to the selection ef th
most uncertain samples, whereas the second stepatiohoosing the cheapest and most diverse
samples among the uncertain ones. This can be lopnesing two different algorithms, which
differ from each other with respect to the adopiptimization strategy. The first algorithm (i.e.,
the CSAL optimized by SFS) is simple and very fast exploits the sub-optimal sequential
forward selection strategy, whereas the secondianethe CSAL optimized by GA) achieves the
optimization on the basis of the genetic algorithim. the experiments, we compared the

performance of these optimization algorithms. Byg timalysis, we observed that, as expected, the
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CSAL-GA yields better accuracies under the same labelist wih respect to the sub-optimal
CSAL-SFS. This is achieved by slightly increasihg tomputational time necessary to find the
solution. Nonetheless, this time is negligible witspect to the time taken for collecting labels.

In the experimental analysis, we also compared pgheposed method with the most
promising state-of-the-art AL methods presentedthe remote sensing literature. By this
comparison, we observed that the proposed methowsabne to significantly reduce the cost of
the collection of reference samples to reach trseretk classification accuracy compared to the
state of the art AL methods. From another perspecti can achieve the same accuracy reached
by other techniques with a sharply smaller labetingt. We underline that this is a very important
advantage, because the main goal of AL is to op8@nthe training set with a minimum cost. An
important issue pointed out from our result is twaen label collection is done on the ground,
minimizing the number of labeled samples shouldb®othe goal of AL technique. Indeed, fixed a
target accuracy, it can be more efficient to coleetarge number of labeled samples that are close
to each other (and only partially diverse) tharmeals number of labeled samples that are far to
each other (and very diverse).

It is worth noting that proposed method is intriadlly classifier independent. Even if here it
is implemented in the framework of the SVM classif(because of its efficiency for remote
sensing image classification), it can be easilypselb for the other classifiers. This can be done by
selecting suitable techniques for assessing unegrtand diversity of samples in the framework
of the considered classifier, and then using thertheé framework of the algorithms presented in
this paper.

As a final remark, we would like to point out ththe use of efficient techniques for the
exploitation of AL methods in real applicationsbiscoming a more and more important topic. In
this context, the proposed method is very promigiagt allows optimizing the definition of a

training set, decreasing significantly the cost affdrt required for reference data collection.as
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future development of this work, we plan to appipgosed technique and the related software
tool for a real label collection task on the groultbreover, we plan to improve the initialization
of the proposed method,, which can affect the cagarece time of the process especially for large

images.
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