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Applications
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Abstract—The availability of Very High Resolution (VHR)
Synthetic Aperture Radar (SAR) images, which can be acquired
by satellites over the same geographical area with short repetition
interval, makes the development of effective unsupervised change-
detection techniques very important. This paper proposes a
hierarchical approach to change detection in VHR SAR images
for addressing surveillance applications, where VHR data are
acquired with high temporal resolution (e.g., one image every few
days). The proposed approach is based on two concepts: i) ex-
ploitation of a multiscale technique for a preliminary detection
of areas containing changes in backscattering at different scales
(hot-spots); and ii) explicit modeling of the semantic meaning
of changes by using both the intrinsic SAR image properties
(e.g., acquisition geometry and scattering mechanisms) and the
available prior information. In order to illustrate the effectiveness
of the proposed approach, a problem of freight traffic surveillance
is addressed considering two data sets. Each of them is made
up of a pair of multitemporal VHR SAR images acquired by
the COSMO-SkyMed constellation in spotlight mode. Each data
set defines a complex change-detection problem due to both
the presence of a variety of changes on the ground and the
complexity of object backscattering. Experimental results point
out the effectiveness of the proposed approach.

Index Terms—Multitemporal images, Change detection, Very
high geometrical resolution images, Synthetic aperture radar,
Image processing, Remote sensing.

I. INTRODUCTION

C
HANGE detection is a process of primary importance for

a large number of applications, including urban planning

[1], natural resources monitoring [2], agricultural surveys [3],

natural hazard prevention and monitoring [4]. In this context,

optical sensors have been extensively exploited and several

automatic and unsupervised change-detection methods have

been developed. Unlike optical sensors, Synthetic Aperture

Radar (SAR) systems have been less exploited. This is due to

the fact that SAR images, being acquired by a coherent side

looking system, suffer from the presence of both an intrinsic

speckle and geometry distortions, which make any automatic

analysis difficult. Despite the presence of speckle noise, the

use of SAR sensors in change detection is highly attractive

from the operational viewpoint. In fact, SAR has the advantage

over optical sensors of being insensitive to atmospheric and

sunlight conditions. This makes it possible to ensure the data
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acquisition on an area of interest in advance according to end-

user requirements (e.g., seasonal and agricultural calendars [5],

[6]) or during a crisis event (e.g., hurricanes, floods [7]).

In the past few years, we have observed an increased

availability of Very High Resolution (VHR) SAR images. This

is due to a new generation of satellites, such as TerraSAR-

X [8] and COSMO-SkyMed (CSK R©) [9], which are able to

acquire images with a resolution of up to 1 meter. Differently

from the low and medium resolution SAR images, in VHR

data only a small number of elementary scatterers are present

inside the resolution cell and hence more features of the

investigated ground object become visible. The significant

amount of geometrical details present in a VHR image changes

completely the perspective of SAR data analysis: objects that

are considered homogeneous from a semantic point of view,

such us buildings, show a signature that is inhomogeneous at

high spatial resolution because of the scattering contributions

from sub-objects that compose them. For instance a building

signature is made up of: i) a layover area, due to the backscat-

tering contributions coming from the ground, the vertical wall

and the roof of the building; ii) a double bounce line generated

by the multiple scattering mechanisms between the ground

and the vertical wall; and iii) a shadow area generated by

the occlusion of the sensor due to the building itself [4],

[10], [11]. Hence, in order to properly detect changes in

the objects present in the scene it is necessary to take into

account backscattering contributions from sub-objects of the

investigated object. An illustrative example of the use of this

concept for the detection of building radar footprint in single

date VHR SAR images is given in [10]. The rationale behind

this approach is that each building can be modeled by means of

interrelated characteristics that depend on both the considered

object and the acquisition geometry. The low-level features

of a building (i.e., layover, double-bounce, and shadowing

effects) are combined using a production net in order to

derive more structured primitives, which can be associated

with a semantic meaning that allows a reliable detection and

reconstruction of the building.

The short repetition interval guaranteed by the 4 satellites

of the CSK R© constellation (i.e., less than 12 hours in emer-

gency situation) opens new attractive opportunities for both

the scientific and the user communities. In this scenario it

is possible to develop change-detection (CD) methods for

solving specific surveillance and monitoring problems of sites

of general interest, such as ports, airports, industrial sites,

etc. [12]. Nevertheless, the combination of short repetition
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interval and very high geometrical resolution leads to some

challenging issues that should be addressed. Unsupervised

change-detection techniques developed for medium/high reso-

lution SAR generally compare pixel-by-pixel (e.g., according

to ratio or log-ratio operators) two SAR images acquired on

the same geographical area at different times by assuming

that they are similar to each other except for the presence of

changes occurred on the ground. This approach is not suitable

to be applied to VHR SAR images due to: i) the intrinsic

complexity of the electromagnetic backscattering mechanisms

that increases with the complexity of the imaged objects at

metric resolution; and ii) possible differences in acquisition

conditions of multitemporal images (e.g., view angle, moisture

content on the ground). Thus the same object may show

different backscattering behaviors at two dates even though

it did not experience any change, leading to a large amount

of false alarms if a pixel-by-pixel comparison between multi-

temporal images is performed. Moreover, depending on the

application, some changes may be of interest to the end-

users, whereas others may not. Accordingly, there is a need

to change the way of approaching the problem with respect

to sensors having resolutions in the range of 10–30 meters.

It is no longer possible to analyze an image on the basis

of single pixels or also of small neighborhood systems [13],

[14]. Instead it is necessary to explicitly model the semantic

meaning of objects. This can be achieved by exploiting both

the intrinsic SAR image properties (e.g., acquisition geometry

and scattering mechanisms) and all available prior information

on the condsidered application.

In the literature few unsupervised approaches to change

detection in VHR SAR images have been presented that

exploit the semantic meaning of the backscattering changes

in order to effectively separate the changes of interest from

those that are not interesting [4], [7]. However, they do not

take explicitly into account the multiscale proprieties of the

expected changes. The main idea behind multiscale strategies

is that there should be an optimal representation level for

each ground object. For example, in the multiscale analysis

of a very high resolution image (e.g., 1 meter resolution),

at finer scale we can identify cars. At coarser scales we can

identify groups of cars or larger size objects such as buildings.

At the coarse scale we can identify city blocks. In order to

properly model objects at different scales it is necessary to

take into account: i) the logical connection of the objects at

the same level; and ii) the hierarchical connection of the object

represented at a generic level with the objects at the finer

and coarser scales [15]. In the recent literature, two papers

have made use of this concept for the detection of changes in

SAR images having resolution in the range 10-30 meters [16],

[17]. In [16] the authors proposed a scale-driven approach to

change detection that aims at both preserving the geometrical

details and filtering out the speckle noise in the homogeneous

regions. In [17] a cumulant-version of the Kullback-Leibler

distance is used as a statistical measure for detecting the

changes, and the concept of the Multiscale Change Profiles

(MCP) is introduced. MCPs are indicators used to choose the

proper window size that guarantees at the same time both

enough samples for computing the KL-distance in a reliable

manner and preservation of geometrical details. This rationale

was extended in [18] by computing the KL-distance between

adaptive regions homogeneous both in space and time (i.e.,

multitemporal parcels) [19]. Even though this model concep-

tually overcomes the two contrasting requirements mentioned

before, and better fits with the high geometrical proprieties

of VHR images, it poses the problem on how to generate the

parcels in an effective way. Despite their nice property of being

multiscale, the mentioned methods do not model the change in

backscattering of complex objects and are not able to exploit

the semantic meaning of changes in backscattering (i.e., each

kind of change is treated in the same way). Therefore, they

mainly address change-detection problems showing a single

kind of change and are not optimized for separating multiple

changes.

In order to overcome the limitations of state-of-the-art

methods, in this work we propose a hierarchical approach to

change detection in VHR multitemporal SAR images, which

is based on two concepts: i) exploitation of a multiscale

technique for a preliminary detection of areas containing

changes in backscattering at different scales (hot-spots); and

ii) explicit modeling of the semantic meaning of changes by

using both the intrinsic SAR image properties (e.g., acquisition

geometry and scattering mechanisms) and the available prior

information. Due to the mentioned properties and the specific

requirements on the availability of prior information, the

proposed method is particularly suitable for surveillance and

monitoring applications.

In this work the method is designed and illustrated on

the specific application of surveillance of freight traffic. The

specific application is introduced in order to better illustrate the

method. However the approach is general and can be easily

used in other applications dealing with multitemporal VHR

images for surveillance purposes. As it will be explained in

detail later, in such a scenario it is reasonable to assume that

prior information is available.

Two data sets, each made up of a pair of VHR CSK R©

SAR images acquired in spotlight mode, were considered in

the validation of the proposed approach. For both of them

a priori knowledge is available on the investigated scenario.

The first data set was acquired over the freight village “A.

Vespucci”, Livorno (Italy). Changes that occurred on the

ground are mainly due to a single reason: movements of

cargo (i.e., only one kind of change is present). The second

data set was acquired over the port of the city of Livorno

(Italy). This scenario is much more complex and between

the two acquisitions several kinds of changes occurred on the

ground. Changes are mainly due to cargo ship, truck and cargo

movements. Moreover non interesting changes were observed

due to the variation in the water content of the ground due

to heavy rain between the two acquisitions. Results obtained

on both data sets confirmed the effectiveness of the proposed

approach.

The rest of the paper is organized into four sections.

Section II introduces the problem of change detection for port

surveillance applications with VHR SAR images by describing

the usual structure of a port. This description gives a better

understanding of the rationale behind the proposed approach
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Fig. 2. Conceptual flow of the proposed approach for monitoring and surveillance applications.

of interest such as airports, industrial areas, logistic centers

and so on.

The proposed method makes use of the prior information

about the zones of interest in the investigated site in order to

model, extract and exploit the semantic meaning of backscat-

tering changes at the different resolution levels.

III. PROPOSED HIERARCHICAL APPROACH TO CHANGE

DETECTION

Let us consider two amplitude VHR SAR images X1 and

X2 acquired on the same geographical area at different times

τ1 and τ2, respectively. Let us assume that the area of interest

is associated to a surveillance problem, i.e., it is an airport,

a port, a logistic center or an industrial area, and that the

goal is to detect changes for monitoring commercial traffic.

The most critical issue dealing with this kind of applications

is related to the presence of many possible kinds of changes

on the ground. A single test site may include many kinds

of change that show significantly different characteristics in

terms of size, shape and semantic meaning. Nevertheless, these

kinds of change may exhibit similarities in the backscattering

values even though they have a different semantic meaning.

Here we propose to deal with this problem by exploiting all

the available prior information about the scene. Given the

considered kind of application, it is reasonable to assume

that prior information about the test site is available, such as

the position of buildings, docks, landing strips, or the usage

of specific zones (e.g., loading zones, storage tanks areas,

docking facilities). The kind of available information depends

on each specific problem.

Under this assumption we introduce an approach made up

of three stages: i) a hierarchical multiscale representation of

the multitemporal information; ii) a preliminary identification

of the areas affected by changes in backscattering (hot-spots);

and iii) a scale-driven detection of the changes, which uses

the prior information. Fig. 2 shows the block scheme of the

proposed approach.

A. Hierarchical Multiscale Representation of Multitemporal

Information

In order to detect hot-spots and to reduce the noise impact,

a multilevel representation of the multitemporal information

is computed. The representation is achieved according to a

wavelet-based procedure [16]. Here the multiscale representa-

tion is used to derive the hot-spots rather than to directly detect

changes. The detected hot-spots will drive the next steps of the

proposed method (see Sec. III-C).

The multiscale representation is obtained as follows. Differ-

ences in backscattering are highlighted by means of the log-

ratio image XLR i.e., XLR = logX2/X1. This is the most

common operator for highlighting changes in multitemporal

SAR data [14]. Indeed, the ratio operator is used in order

to reduce the effects of speckle in the resulting image, and

log operator is used to transform the residual multiplicative

noise (which is expected to be high in portions of the

ratio image associated with changed areas on the ground)

in an additive noise component. XLR includes information

about changes associated to both increase and decrease of

backscattering. Unchanged pixels assume values close to zero,

whereas positive and negative changes assume positive and

negative values far from zero, respectively. Nevertheless, no

information can be retrieved from XLR about the semantic

label of such changes. From XLR a set of multilevel images

XMS =
{

X
0
LR, . . . ,X

n
LR, . . . ,X

N−1
LR

}

is computed, where the

superscript n, n = 0, . . . , N indicates the resolution level of

images. The output at resolution level 0 corresponds to the

original image, i.e., X
0
LR ≡ XLR. For n ranging from 0

to N − 1, the images are characterized by different trade-

offs between spatial-detail preservation and speckle reduction.

The decomposition is based on the two-dimensional discrete

stationary wavelet transform (2D-SWT)1. 2D-SWT applies to

the considered signal at each resolution level n appropriate

1As the log operation transforms the multiplicative residual speckle noise
of the ratio image into an additive noise, SWT can be applied to XLR without
any additional processing. Moreover, differently from the DWT, SWT avoids
down-sampling the filtered signals after each convolution step.
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level-dependent high- and low-pass filters with impulse re-

sponse hn(·) and ln(·), n = 0, 1, . . . , N−1, respectively. Filter

impulse response depends on the selected Wavelet family and

on the desired length of filters. hn(·) and ln(·) are applied

first along rows and then along columns in order to produce

four different images at the next scale. Thus, the image XLR

is decomposed into four images of the same size as the

original one. In detail, the decomposition phase produces:

i) the so called approximation subband X
LLn

LR , which is a lower

resolution version of image XLR, and contains low spatial

frequencies both in the horizontal and the vertical directions at

resolution level n; and ii) the so called detail subbands, which

are the three high-frequency images XLHn

LR , XHLn

LR , and X
HHn

LR

corresponding to the three images in horizontal, vertical, and

diagonal directions at resolution level n, respectively. Note

that, superscripts LL, LH, HL, and HH specify the order in

which hn(·) and ln(·), n = 0, 1, . . . , N−1, have been applied

to obtain the considered sub-band.

Multiresolution decomposition is obtained by recursively

applying the described procedure to the approximation sub-

band X
LLn

LR at each scale. Thus, the outputs at a generic

resolution level can be expressed analytically as follows:

X
LLn+1

LR (i, j) =

Qn−1
∑

p=0

Qn−1
∑

q=0

ln[p]ln[q]XLLn

LR (i+ p, j + q)

X
LHn+1

LR (i, j) =

Qn−1
∑

p=0

Qn−1
∑

q=0

ln[p]hn[q]XLLn

LR (i+ p, j + q)

X
HLn+1

LR (i, j) =

Qn−1
∑

p=0

Qn−1
∑

q=0

hn[p]ln[q]XLLn

LR (i+ p, j + q)

X
HHn+1

LR (i, j) =

Qn−1
∑

p=0

Qn−1
∑

q=0

hn[p]hn[q]XLLn

LR (i+ p, j + q)

(1)

where Qn is the length of the wavelet filters at resolution

levels n and (i, j) are the spatial coordinates of the pixels in

the image. Finally, in order to obtain the image set XMS (where

each image contains information at a different resolution

level) for each approximation sub-band X
LLn+1

LR the inverse

stationary wavelet transform (2D-ISWT) is applied n+1 times.

B. Scale-Dependent Preliminary Detection of Changes in

Backscattering (Hot-Spots)

Once all the resolution levels have been brought back to the

image domain, for each element Xn
LR (n = 0, 1, . . . , N − 1)

of the set XMS, a CD map is computed according to the

split-based unsupervised thresholding approach proposed in

[24]. This approach was adopted since it can effectively detect

changes in images of large size even when the prior probability

of the class of change is small. This is due to the ability

of the method to analyze only the sub-parts of the images

that have the highest probabilities to contain changed pixels.

In greater detail, each image X
n
LR is automatically split into

a set of S sub-images X
n,s
LR , s = 1, . . . , S of user defined

size. The choice of the split size depends on the extension

of the expected changes, and thus on the level n considered.

Nevertheless, a minimum size should be guaranteed so that

the estimation of statistical parameters is reliable. Once the

size is defined at each resolution level, splits are sorted

according to their probability to contain a significant amount of

changed pixels. As log-ratio images are considered, the sorting

procedure can be reasonably done according to the value of

the variance σ2
s,n, s = 1, . . . , S computed on the pixels of each

split. The desired set PS of splits with the highest probabilities

to contain changes is defined by selecting the first elements

of the sorted set which fitful the following inequality:

σ2
s,n ≥ σ̄2

n +Bσn, s = 1, . . . , S, n = 1, . . . , N − 1 (2)

where σ̄2
n denotes the average variance of splits at level n,

σn represents the standard deviation of the variance of splits

and B > 0 is a constant. High values of B will make the

selection strict, so that only those splits with high variance

will be selected (i.e., the ones with the highest probability of

containing changes), vice-versa low values of B will make the

selection gentle and more blocks will be chosen. It is important

to chose B considering the trade-off between selecting only

high-variance splits and having a sufficient number of samples

for performing next steps devoted to pixel labeling.

The split-based selection allows defining subset of pixels in

which the class of change shows a higher prior probability than

in the whole image. At each resolution level the defined pixel

sub-set is used to compute the change-detection map. Here the

thresholding method described in [25] is adopted. Each sub-set

of pixels is modeled as a sum of 3 probability density functions

associated to no-change, positive change, and negative change

classes. Under this assumption, the Bayes decision rule for

minimum error is applied to separate the 3 classes. To this

end a statistical model for class distributions is required

together with an approach for class statistical parameters es-

timation. Following [25], the generalized-Gaussian model and

the well known Expectation-Maximization (EM) algorithm

[26] were employed. In this way, a CD map that shows

three different classes is obtained at each resolution level n
(n = 0, . . . , N − 1). The generated CD maps exhibit different

trade-offs between details preservation and homogeneity i.e.,

the higher is n the larger and more homogeneous are the

detected areas of change and viceversa (see Fig. 6). Since these

maps partially share changed areas, in order not to process

the same changed areas multiple times at different resolution

levels, a cancellation is performed. Starting from the coarsest

level (n = N − 1) and moving toward the finest one (n = 0),

from each level n (n = 0, . . . , N−1) changed areas that were

detected (and therefore processed) at coarser levels m, m =
n+1, . . . , N − 1, are removed. The result is a set of MCD =
{

M
0
CD, . . . ,M

n
CD, . . . ,M

N−1
CD

}

change-detection maps com-

plementary to each other. Thus each map in MCD contains a

set of complementary changed areas Cn
h , (h = 1, . . . , Hn). In

the following we will refer to these areas as hot-spots. It is

worth noting, that differently from [24] these change-detection

maps are not the final result of the proposed approach, they

will be instead used to drive the detection of changes at finest

scale during the next stage of the proposed approach.
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C. Scale-Driven Detection of Changes Based on Prior Knowl-

edge

In the last stage, changes of interest are extracted with

their semantic meaning. This is done by taking advantage of

the prior knowledge about the considered application, which

is mainly associated to the typical usage of zones to be

controlled and of the detected hot-spots. Thus the scene can

be divided into different zones of interest in which different

kinds of change are expected. Each expected change can be

modeled and extracted by using specific features and change

detectors that take into account the radiometric and geometric

properties of these expected changes. The spatial context can

also be taken into account. Which kind of features and change

detectors should be involved in the process depends on the

specific considered application. Feature extraction (and thus

change detection) is performed by only considering hot spots

Cn
h , (h = 1, . . . , Hn) in MCD defined in the previous stage.

Starting from the lowest resolution level n = N − 1, and

on the basis of the position of hot-spots within the zones of

interest, the strategy for the detection of the specific expected

changes is applied. Once all the Cn
h are analyzed, a finer scale

is considered. This iterative process stops at the resolution

level most suitable to properly detect the expected kinds of

change. It is worth noting that one can expect to consider only

few scales associated with the effects of expected hot-spots of

change. The final change-detection map is built by combining

in a single map the results achieved within the different hot-

spots. In the following, examples of possible features and

feature-dependent change detectors are presented, which are

inspired by a problem of freight traffic surveillance. Despite

features and change detectors may be applied to different hot-

spots Cn
h , in our notation we will omit this dependency in order

to keep the notation as simple as possible.

Let us consider the example of Livorno maritime port

surveillance described in Section II (see Fig. 1a). In this

scenario the main changes that characterize the cargo area

of a commercial port are due to: 1) container movements;

2) cars movements; and 3) cargo ships movements. In the

following they will be analyzed in more detail presenting

their properties, the features and the change detectors more

suitable to identify them.

1) Detection of Changes Associated with Movement of

Containers: Shipping containers are reusable transport and

storage metal units for moving products and raw materials

between locations. They are made in different size according

to ISO 6346 standard for containers. Common lengths are 20

and 40 feet. In addition, they are produced in two heights:

“standard” (8.6 feet) and “high” (9.6 feet). Given the geometry,

a single isolated container may be identified exploiting the

strong response coming from the dihedral reflector, generated

by the wall of the container and the ground where it sets

down, which results in a double bounce effect that involves

bright lines in SAR images. It is worth noting that the

double-bounce Radar Cross Section (RCS) may depend on

radar parameters (i.e., frequency and polarization), container

parameters (e.g., shape, material), geometry parameters (i.e.,

incidence angle and container aspect angle i.e., the angle

Fig. 3. Window used by the line detector.

between the container wall facing the sensor and the azimuth

direction), and background parameters (e.g., ground type,

weather conditions). As presented in [27], the strength of

the double-bounce varies as the aspect angle and background

parameters vary according to a non-liner relation that can be

empirically derived. These parameters have to be taken into

account during the phase of detection. Thus, a container can

be detected by extracting its double-bounce effect generated

by the long side of the container, i.e., a bright line with a

predefined minimum dimension of 20 feet with respect to the

aspect angle.

In the proposed technique the extraction of bright lines is

carried out on each single-date image by means of the line

detector proposed by Tupin et al. in [28] but modified in

order to extract the bright lines instead of the dark ones. This

detector was successfully used in [10] for the detection of

the bright lines associated with the presence of a building

considering VHR TerraSAR-X images. It consists of the fusion

of two-line detectors, namely D1 and D2, which are based

on the geometry reported in Fig. 3 considering 16 different

directions. In greater detail, the response of D1 is the minimum

response of a ratio edge detector applied to both sides of the

central linear structure of Fig. 3:

rL = min(r
(1,2)
E , r

(1,3)
E ) (3)

where superscript 1 denotes the central region, superscripts

2 and 3 the two lateral regions, and r
(t,c)
E , with (t, c) ∈

{(1, 2), (1, 3)}, is defined as follows:

r
(t,c)
E =

{

1−min
(

µt

µc
, µc

µt

)

if µ1 ≥ µ2, µ3

0 Otherwise.
(4)

where µt is the empirical mean of the region t = 1 hav-

ing Mt = ω × ωt pixels with amplitude At
p, i.e., µt =

( 1
Mt

)
∑

p∈t A
t
p. The same definition is applied to µc (with

c = 2, 3) i.e., µc = ( 1
Mc

)
∑

p∈c A
c
p. The response of D2 is

the minimum response of the cross-correlation edge detector

applied to both sides of the central linear structure of Fig. 3:

ρ = min(ρ(1,2), ρ(1,3)) (5)

where subscript 1 denotes the central region, subscripts 2 and 3
the two lateral regions, and ρ2(t,c) with (t, c) ∈ {(1, 2), (1, 3)}
is defined as follows:

ρ2(t,c) =











1

1+(Mt+Mc)
MtLCV2

t
CR2

(t,c)
+ntLCV2

c

MtMc(CR(t,c)−1)2

if µ1 ≥ µ2, µ3

0 Otherwise.

(6)
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where Mt = ω × ωt and Mc = ω × ωc are the number of

pixels, CR(t,c) = µt/µc is the empirical contrast, LCVt and

LCVc are the local coefficient of variation for regions t = 1
and c = 2, 3, respectively. The results of the two detectors,

D1 and D2, are finally merged for each direction, by using an

associative symmetrical sum Σ(rL, ρ) as follows:

Σ(rL, ρ) =
rLρ

1− rL − ρ+ 2rLρ
, with rL, ρ ∈ [0, 1] (7)

A line is detected when Σ(rL, ρ) is higher than the decision

threshold Σ(rL, ρ)min. The threshold can be identified manu-

ally or automatically, and its application results in a map of

detected lines. Nevertheless, when VHR SAR data are consid-

ered, the hypothesis of fully developed speckle is not anymore

satisfied. Thus the statistical properties of speckle studied for

medium and low resolution SAR images cannot be used to

automatically derive thresholds with a constant false alarm

ratio as was done in [28]. In this work a fixed threshold equal

to 0.7 has given a good detection of the linear bright features.

Once the containers are identified in X1 and X2 by means

of their double-bounce response, they can be compared in

order to detect possible changes. The comparison can be

carried out according to the ratio of the means or to statistical

similarity measures (e.g., Kullback-Leibler divergence, Mutual

Information). In this paper we use the Kullback-Leibler (KL)

divergence. KL divergence [29] is a measure of the distance

among statistical distributions and gives an indication on

the difference between the shapes of two probability density

functions (pdfs). It is formally defined as follows. Let X1(fL)
and X2(fL) be two random variables associated to the pixels

belonging to a feature of bright line fL in images X1 and

X2, respectively, and let fX1(fL)(x) and fX2(fL)(x) be the

corresponding probability density functions. Then the KL

distance based on bright linear features is defined as:

KL (X1(fL)|X2(fL)) =

∫

log
fX2(fL)(x)

fX1(fL)(x)
fX2(fL)(x) dx

(8)

In order to perform the comparison of multitemporal structures

according to (8), pdfs should be known. Nonetheless, assuming

that the density to be approximated is not too far from a

Gaussian pdf, Inglada et al. in [17] demonstrated that it is

possible to model the shape of a statistical distribution using

the infinite Edgeworth series expansion of cumulats truncated

at a given order. According to the results provided in [17], the

cumulant-based pdf estimation presents a more robust behavior

with respect to other parametric models (i.e., Gaussian or

Pearson based), even though the hypothesis that the pdf to be

approximated is Gaussian does not accurately fit the statistical

model of SAR images.

Since the cumulant-based KL divergence (as the KL-

divergence) is not symmetric, a symmetric version between

two observations X1(fL) and X2(fL), called cumulant-based

KL distance (CKLD), can be defined as:

CKLD(X1(fL)|X2(fL)) = CKLD(X2(fL)|X1(fL)) =

KLEdgeworth (X1(fL)|X2(fL)) + KLEdgeworth (X2(fL)|X1(fL))
(9)

Fig. 4. Window used by the isolated scatterer detector.

The KL distance is then thresholded in order to identify

changes in each analyzed double-bounce line of containers.

It is worth noting that, containers are normally stored

together in large numbers and they may be piled up in stacks

forming densely packed clusters with height, orientation and

size. Even thought, the container clusters can be viewed as a

problem where each element has similar characteristics, the

dense packing and large variation in stacking configuration

make it difficult the detection of single containers. Indeed,

due to both the occlusion problems and different orientations

of containers relative to the radar antenna (i.e., different aspect

angles) the appearance of containers is not always the same,

and a detailed quantitative information of the number of

containers may be difficult or even impossible to extract.

Nevertheless, a further processing of close double-bounce

lines based on the method presented in [30] can mitigate the

ambiguity on possible staking configurations of containers.

2) Detection of Changes Associated with Movement of

Cars: Cars are often one of the freights handled by ports. In

order to detect cars in SAR images it is necessary to identify

their radar cross section. As described in [31] and like for

the RCS of double-bounce lines, RCS of cars may depend

on radar parameters (i.e., frequency and polarization), car

parameters (e.g., model, shape, material), geometry parameters

(i.e., incidence angle and car aspect angle), and background

parameters (e.g., ground type, weather conditions). In [31] it

was shown that there is a high probability of detection of cars

if they are in front, lateral or back view with respect to the

sensor. Such orientations produce a large RCS registered in

the SAR image. Given their dimension and assuming front or

back orientation, cars can be modeled as isolated scatterers

with a given size. This is not true anymore if the cars are

in lateral view with respect to the sensor. The extraction of

isolated scatterers for the detection of vehicles is performed

by means of the single-data detector proposed by Lopes et

al. in [32]. Because the SAR impulse response is generally a

separable function of range and azimuth directions, the main

part of the point target response, i.e., the main lobe and the

first side lobe, is spread on a neighborhood similar to a cross.

Fig. 4 shows the geometry of the isolated scatterer detector

proposed in [32]. On the basis of this geometry, let us denote

with subscript 1 the inner region and with subscript 2 the

outer region, and let Ap be the amplitude of pixel, so that the

radiometric empirical mean µΩ of a given region Ω having MΩ

pixels is µΩ = ( 1
MΩ

)
∑

p∈Ω Ap. The response of the detector

is defined as:

rPT = 1−min

(

µ1

µ2
,
µ2

µ1

)

(10)
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Thus, a pixel is considered as belonging to an isolated scat-

terer when its response rPT is higher than a manually or

automatically chosen threshold rPT min. This detector can be

applied directly to the images X1 and X2 and the two results

compared in order to detect the changes. Given the small

number of samples that make up a car signature, statistical

comparison methods like similarity measures (e.g., Kullback-

Leibler divergence or Mutual Information) are not suitable. We

perform the comparison of the isolated scatterers extracted as

described before through a logical XOR operator. Then we

associate a change in a car with regions with a predefined

minimum size resulting for the XOR operation. Nevertheless,

other techniques that operate in the multitemporal data ex-

tracting differential features can be applied to the detection of

changes in cars.

3) Detection of Changes Associated with Movement of

Cargo Ships: Cargo ships are one of the main vectors for

the transportation of goods in a port. They are categorized

according to the task they have to accomplish (e.g., container

ships or tankers) and they can exhibit different size and

shape. Nevertheless, due to the expected large size, changes

associated with their positions can be detected using coarser

levels of the multiresolution representation. Since cargo ships

float in docks, changes due to cargo ships movements are

often in between the ones associated to the natural movement

of the water surface. Thus to remove this undesired effect

the normalized ratio of means can be used. This is because

changes in water backscattering do not strongly affect the

mean value as the appearance/disappearance of ships do [33].

Hence, the normalized ratio of means of the images X1 and

X2, computed inside the hot-spots Cn
h present in the wet dock,

can be used. It is worth noting that other indicators could

have been used to detect the movement of ships. Nevertheless,

in order to maintain the computation load low, the hot-spots

identified in the second step of the proposed approach were

used. This image is the one used for hot-spots detection in the

second step of the proposed approach. Let Aτ
p be the amplitude

of pixel at time τ = τ1, τ2, so that the radiometric empirical

mean µτ
Cn

h
of a given hot-spot Cn

h , h = 1, . . . , HN having

Mτ
Cn
h

pixels is µτ
Cn
h
= ( 1

Mτ
Cn
h

)
∑

p∈Cn
h

Aτ
p . The response of the

detector is defined as:

r = 1−min

(

µτ1
Cn
h

µτ2
Cn
h

,
µτ2
Cn
h

µτ1
Cn
h

)

(11)

In this work we choose to only consider low resolution

levels since we are interested only in detecting cargo ships

movements. More detailed information about the cargo ships

(e.g., the kind of ship) could be retrieved by processing

higher resolution levels (e.g., analyzing the histogram of the

ship at the finest scale and comparing it with a database

of ship histograms). However this kind of analysis is out

of the aim of this work. As a final remark, it is worth

noting that using low resolution levels the results suffer of

a smoothing effect due to the low-pass filter applied during

the multiscale decomposition. This may lead to under/over

estimation of the size of the change and thus of the size of

the appeared/disappeared ship.

D. Parallel Processing Architecture

Given the nature of the problem, the requirements that have

to be fulfilled from the computational viewpoint are two:

i) the analysis has to be performed in near-real time; and

ii) the scene can be associated to a large area. These two

constrains are in contrast: increasing the area of the scene

increases the computational burden and thus the overall time

required to process the data. In order to face this problem, we

developed the proposed approach in such a way as to be run

on a computer cluster infrastructure. To this end, we defined a

parallelization strategy based on the concept divide et impera.

The main idea is that the same job can be performed by K
different nodes on a small subset of the scene. The maximum

speedup achievable using this strategy will depend on both

the portion of code that can be parallelized (i.e., Amdahl’s

law [34]), and the computation resource available (taking into

account the law of diminishing returns).

In greater detail, the proposed approach can be divided into

two computational load phases. In the first phase the entire

scene has to be analyzed in order to derive the multiscale

representation of the changes in backscattering (see Sec. III-A

and Sec. III-B). This phase generates a computational burden

that is proportional to the size of the multitemporal images.

Thus the concept of divide et impera can be applied as follows.

First, the VHR SAR images are split into tiles of a given

size. In order to avoid borders problem (i.e., to detect changes

located at the borders between two tiles) every tile overlaps

with its neighbors. Second, the tiles are distributed among

the computational nodes, which independently execute the

multiscale decomposition and the detection of hot-spots.

In the second phase (Sec. III-C), the change detectors are

applied to the hot-spots found in the previous step of the

proposed approach. It is worth noting that the selection of the

more suitable detector is driven from the prior information

available about the scene to be analyzed. Therefore, the com-

putational load of this phase will depend on their extension and

on the kind of change to be detected (i.e., on the complexity

of the detector).

The results for each tile are finally merged in the full size

change-detection map.

IV. DATA DESCRIPTION AND EXPERIMENTAL RESULTS

To assess the effectiveness of the proposed approach, ex-

periments were carried out on two different data sets both

describing a problem of freight traffic surveillance. The first

data set represents a problem of monitoring of the movement

of cars and it is related to the logistic center “A. Vespucci”,

Livorno (Italy), whereas the second data set represents a

complex maritime port scene where different kinds of transport

operations are carried out, and it is related to the port of

Livorno (Italy).

A. Logistic Center “A. Vespucci”: Cars Handling Surveillance

The first data set is made up of two spotlight mode

(1m×1m resolution, with 0.5m×0.5m pixel spacing, X-band)

CSK R© 1-look amplitude images. They were acquired in HH-

polarization on the 4th and 20th May 2011, on the freight
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(a) (b)

(c) (d)

Fig. 5. Logistic center “A. Vespucci” of Livorno (Italy) data set: (a) optical image — GeoEye, Tele Atlas — c©Google — 2011; (b) RGB multitemporal
composition of spotlight COSMOSky-Med images (R:20/05/2011, G:04/05/2011, B:20/04/2011) c©ASI — Agenzia Spaziale Italiana — 2011. All Rights
Reserved; (c) thresholding of X4

LR
; and (d) the proposed technique. New cars appear in magenta, and removed once are in green color.

village “‘A. Vespucci” in ascending orbit with 23–24 degree

incidence angle. The logistic center (43◦36’14” N, 10◦23’39”

E) was set up in order to allow the exchange among the

different modes of transportation (i.e., rail and truck) in such a

way as to facilitate the traffic of freights to the final destination.

One of the main kinds of freight handled by the center are cars.

Available prior information about the site tells us where car

parking lots are positioned and how they are oriented. Thus,

a test site of 883 × 693 pixels of the full scene was selected

in which all the cars face the sensor.

In order to apply the proposed method, the log-ratio

image XLR was computed from the two calibrated and

co-registered CSK R© images. The co-registration was per-

formed with sub-pixel accuracy. From XLR, the set MCD =
{

M
0
CD, . . . ,M

n
CD, . . . ,M

N−1
CD

}

, with N = 5 resolution lev-

els, was computed by applying firstly the 2D-SWT and the

2D-ISWT with an 8-length Daubechies filter. The impulse

response of low-pass decomposition Daubechies filter of order

4 is given by the following coefficient set:

{−0.0105974, 0.0328830, 0.0308414,−0.187035,

−0.0279838, 0.630881, 0.714847, 0.230378.}

The finite impulse response of the high-pass filter for the de-

composition step can be computed by satisfying the properties

of the quadrature mirror filters. From the multiresolution image

representation, the complementary set of hot-spots Cn
h , (h =

1, . . . , Hn) have been extracted according to the unsupervised

split-based method described in Section III-B. In particular,

we set the value of B equal to 3. This value gives for the

considered data set the better trade-off between selecting high

variance splits and sufficient number of samples. Since from

the available prior information the expected change in this

scene is related only to the movement of cars, for each hot-spot

Cn
h found at the levels n equal to 4 and 3, isolated scatterers

are detected in X1 and X2 using the detector with response

given by (10), with ωc = 3, ωin = 5 and ωout = 11. Isolated

scatterers obtained for each image are compared according

to the logical XOR operator in order to detect differences

between them: i.e., appeared or disappeared cars. Considering

the spatial resolution of the CSK R© images, this feature may

result in more than one scatterer for each vehicle. Therefore,

a slight overestimation of the number of cars is expected.

TABLE I
QUANTITATIVE PARAMETERS ASSOCIATED WITH CHANGED AREAS

RETRIEVED WITH THE PROPOSED APPROACH IN THE LOGISTIC CENTER

“A. Vespucci”.

Parameter Retreived Reference

# of added cars 440 302

# of removed cars 928 808

Since no ground truth is available for the scene considered,

the CD map obtained with the proposed method was compared
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(a) (b) (c)

Fig. 6. Port of Livorno (Italy) data set: (a) optical image — GeoEye, Tele Atlas — c©Google — 2011; and (b) RGB multitemporal composition of spotlight
COSMOSky-Med images (R:04/24/2010, G:04/23/2010, B:04/24/2010) c©ASI — Agenzia Spaziale Italiana — 2010. All Rights Reserved. (c) CD map
obtained with the proposed technique. Pixels that experience an increasing in the value of backscattering are in magenta, pixels that experience a decreasing
in the value of backscattering are in green color. Legend for the zones: yellow: container terminal; blue: dock; red: car terminal.

from a qualitative point of view with: (a) an RGB multitem-

poral false color composition; (b) the change-detection map

obtained by standard pixel-based thresholding of XLR (i.e.,

M
0
CD) and (c) the change-detection map obtained by thresh-

olding X
4
LR (i.e., M

4
CD). As expected, the change-detection

map obtained with a standard pixel-based thresholding of

XLR is affected by a high number of false alarms due to

noisy components. The change-detection map obtained by

thresholding X
4
LR (Fig. 5c) is less affected by isolated errors

but it shows poor geometrical details. At this resolution level,

cars cannot be counted. Differently, the proposed approach

(Fig. 5d) results in a change-detection map with a lower impact

of false alarms, while at the same time it preserves changes

associated to single cars. Quantitatively, we can automatically

count 440 new cars and 928 cars removed from the logistic

center (green and magenta colors in Fig. 5d, respectively),

whereas a visual inspection on X1 and X2 resulted in 302
new cars and 808 removed (see Table I). This operation was

not possible considering the CD map obtained with standard

pixel-based thresholding of XLR.

B. Port of Livorno Data Set: Port Surveillance

The second data set is made up of two spotlight mode

CSK R© images acquired on the port of Livorno (Italy). The port

of Livorno is one of the largest Italian commercial seaports

with an annual traffic capacity of around 50 million tonnes of

cargo [21]. It is located on the Tyrrhenian Sea in the north-

western part of Tuscany (43◦32’6” N, 10◦17’8” E). The two

spotlight CSK R© 1-look amplitude images (1m×1m resolution,

with 0.5m×0.5m pixel spacing, X-band) were acquired in

VV-polarization the 23rd and 24th April 2010 in descending

orbit with 25–26 degree incidence angle. The selected test

site is a section (2880×1920 pixels) of the full scene. Fig. 6a

shows the optical image corresponding to the same area

taken from Google Maps. This is a GeoEye RGB true color

composition. Fig. 6b shows a false color composition of the

two CSK R© images. The available prior information about

the scene is associated to the presence of three zones (see

Fig. 6): i) the cargo terminal (red region); ii) the car terminal

(yellow region); and iii) the wet dock (blue region). In the three

mentioned zones we expect different kinds of changes relevant

from the application point of view and associated to the

movement of: i) containers in the container terminal; ii) cars

in car terminals; and iii) cargo ships in the wet dock part.

Moreover, we know from meteorological data that between

the two acquisition dates a strong storm with wind and rain

hit the port. Thus, we expect changes non relevant from the

application viewpoint related to the presence of residual water

in the scene.

To apply the proposed method, the set MCD =
{

M
0
CD, . . . ,M

n
CD, . . . ,M

N−1
CD ,

}

, N = 5, was obtained fol-

lowing the same procedure used for the first data set (see

Section IV-A). Then, using the available prior information the

problem was addressed considering the three zones that make

up the port.

In greater detail, the expected changes for each of the three

zones were extracted as follows.

1) Detection of Changes Associated with Movement of

Containers in the Container Terminal: for each hot-spot Cn
h

found at the level n = 4, 3, bright lines are detected in X1

and X2 using the detector with response given by (7), with

parameters ω = 4, ω1 = 2, and ω2 = ω3 = 4. For each
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TABLE II
QUANTITATIVE PARAMETERS ASSOCIATED WITH CHANGED AREA

RETRIEVED WITH THE PROPOSED APPROACH IN THE PORT OF LIVORNO

DATA SET.

Parameter Retreived Reference

Length of cargo ships
Ship1: 117m Ship1: 116m

Ship2: 85m Ship2: 74m

# of cars in the cargo terminal 284 249

(a) (b)

Fig. 7. Zoom of cargo terminal area where containers are stacked (red box
in left bottom part of Fig. 6). (a) RGB composition of spotlight COSMO-
SkyMed images; and (b) CD map obtained with the proposed method (new
containers appear in magenta, removed ones appear in green).

detected bright line in X1 and X2, the CKLD distance was

computed according to (9). The CKLD was then thresholded

to detect the changes in bright lines location. This allows

one to detect the movement of a single container or a stack

of containers. An example of container detection is given in

Fig.7 (new containers appear in magenta, removed once in

green). As mentioned in Section III-C1, containers are often

stacked on each other, thus the detection of changes associated

with movement of containers cannot fully solved only on the

basis of the analysis of bright lines and other issues should be

considered. For example, the relation between closed bright

lines has to be taken into account [30]. As a matter of fact,

a specific analysis should be carried out which is out of the

goal of this work.

2) Detection of Changes Associated with Movement of Cars

in the Car Terminal: the same procedure used in the first

data set was used here. From the qualitative point of view

the results involve the same considerations derived for the

logistic center and presented in Section IV-A (see Fig. 8).

From a quantitative analysis, 284 new cars were automatically

detected, whereas a visual inspection on X2 resulted in 249
new cars.

3) Detection of Changes Associated with Movement of

Cargo Ships in the Wet Dock: due to the expected size of

cargo ships, this kind of change was detected using only the

information in X
4
LR. Hence, once the hot-spots C4

h was derived,

to distinguish between changes due to the cargo ship move-

ments from the ones associated to the backscattering of water

surface, the normalized ratio of mean values in C4
h was used.

(a) (b) (c) (d)

Fig. 8. Zoom of cargo terminal area where cars are stacked (red box in the
center of Fig. 6). (a) RGB multiteporal composition of spotlight COSMO-
SkyMed images. CD maps obtained by: (b) standard pixel-based thresholding
of XLR; (c) thresholding of X4

LR
; and (d) the proposed technique.

(a) (b)

Fig. 9. Zoom of ships in the wet dock (red box in the top of Fig. 6). (a) RGB
composition of spotlight COSMO-SkyMed images; and (b) CD map obtained
with the proposed method.

Among the C4
h (h = 1, . . . , 166) hot-spots, two were identified

as being compatible with ship movement (see Fig.9). The two

areas have a length of 234 and 170 pixels that, given the pixel

spacing and the aspect angle of about 6 degree, correspond to

117 m and 85 m, respectively. The two values were compared

with the actual length of the two ships anchor in dock, namely,

the oil tanker Capraia and the asphalt/bitumen tanker Bitflower

[35] (see Tab. II). The difference between the estimated and

true measures is mainly due to the smoothing effect of the

multilevel decomposition. Finally, it is worth noting the two

changes detected in the bottom part of the dock. Observing

the two original images acquired on April 23rd and April

24th, we can suppose that two cargo ships were docked in the

same berth at the two times. In such a situation, the change-

detection method can only model the difference between the

place of the two cargo ships. However, it cannot trace them

back to a simultaneous appearance/disappearance of ships.

This is because the frequency of this event, in the Shannon

sense, is not in agreement with the sampling frequency of 1

day given by the multitemporal series.

4) Computational Considerations: It is worth finally men-

tion that the large test scene was processed using a cluster

composed by AMD R© Opteron
TM

6172 processors with 4 GB of

RAM per CPU. The image was divided in tiles of 1024×1024
pixel, with an overlap of 32 pixels. The total number of tiles

was 12, and each tile was processed by one CPU. The cluster

was used also to speed up the feature extraction phase that

was done in parallel. Thus, the peak load of the cluster was

of 36 CPUs running simultaneously. The total processing time
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was about 15 minutes, which fulfil the requirement of near-

real time processing necessary for surveillance applications,

even when large size scene are considered.

V. DISCUSSION AND CONCLUSION

In this paper an approach to change detection in multitem-

poral VHR SAR images for surveillance applications has been

proposed. The approach takes advantage of three concepts: i)

the use of multiscale representation for a preliminary detec-

tion of areas showing significant changes in backscattering

between the two images (hot spots); ii) the exploitation of

prior information about typical usage of zones of interest

in the area under control; and iii) the definition of features

and change detectors optimized for an effective detection of

specific changes in each zone of interest.

The method identifies hot spots at different resolution levels

according to the multiscale information extracted by using the

2-dimensional stationary Wavelet transform. Each hot spot is

then analyzed according to its spatial position within a specific

area of interest by using the available prior information. The

use of such information allows one to define the most proper

features and change detectors to be used for extracting the

expected changes at detailed scale. It is worth noting that the

assumption on the availability of the prior information on the

usage of different areas (and thus on the expected kinds of

change) is reasonable since the method has been developed

for high frequency surveillance/monitoring of sensitive areas

such as maritime ports, airports, etc.

The approach, which after an initial setup is completely

automatic, was tested on two VHR CSK R© spotlight data

sets that show different levels of complexity. The first data

set is fairly simple and is related to the freight village “A.

Vespucci”, Livorno (Italy). Here changes are only associated

to the movement of cars in the stocking lots. The second data

set is complex and is related to the maritime port of Livorno

(Italy). Changes due to car, container and ship movements are

present. In both cases the proposed method demonstrated to

be effective in detecting all the expected kinds of change with

a high accuracy. In detail, concerning the complex data set

of the maritime port of Livorno, the final change-detection

map models with a high geometrical precision both small

changes, such as those associated to car movements (which

can be automatically counted) and large changes due to cargo

ship movements. This is possible because of the hierarchical

extraction of hot spots of change and of the specific definition

on the basis of the available prior information of feature

extraction techniques and change detectors. Indeed, since

feature extraction is driven by prior knowledge, the proposed

method can effectively detect changes with significantly dif-

ferent properties in terms of shape, modeling and size.

Due to the hierarchical processing and to the implemen-

tation on a multi-core cluster we also achieved good perfor-

mance in terms of computational time. The method converged

in 15 minutes on an image of around 55× 106 pixels running

on a cluster architecture.

As a final remark it is important to note that, despite the

method has been illustrated on a specific application, it has

general validity and can be applied to the surveillance and

monitoring of many scenarios.

As future developments of this work we plan to extend

the experimental analysis to long time series of images in

order to further validate the proposed approach in different

conditions toward a possible pre-operational implementation.

Moreover, we plan to increase the variety of change detectors

currently considered to make it possible the analysis of other

scenarios. In particular, we are currently studying the problem

of monitoring airport areas.
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