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 
Abstract—This paper proposes two approaches to change 

detection in bi-temporal remote sensing images based on 
Concurrent Self-Organizing Maps (CSOM) neural classifier. The 
first one performs change detection in a supervised way, whereas 
the second performs change detection in an unsupervised way. 
The supervised approach is based on two steps: (i) Concatenation 
(CON); and (ii) CSOM classification. CSOM classifier uses two 
SOM modules one associated to the class of change and the other to 
the class of no-change for the generation of the training set. 
The unsupervised change detection approach is based on 4 steps: 
(i) image comparison (IC), consisting in either computation of 
difference image (DI) for passive sensors or computation of log-
ratio image (LRI) for active sensors; (ii) unsupervised selection of 
the pseudo-training sample set (USPS); (iii) concatenation (CON); 
and (iv) CSOM classification. The proposed approaches are 
evaluated using two datasets. First dataset is a LANDSAT-5 TM 
bi-temporal image over Mexico area taken before and after two 
wildfires; the second one is a TerraSAR-X image acquired in the 
Fukushima region, Japan, before and after tsunami. Experimental 
results confirm the effectiveness of the proposed approaches. 
 

Index Terms—Supervised/unsupervised change detection, 
multitemporal images, Concurrent Self-Organizing Maps 
(CSOM), remote sensing images 
 

I. INTRODUCTION 

hange detection aims to identify land-cover changes 
between two co-registered remote sensing images 

acquired over the same geographical area at two different time 
instants [1]. In the literature, automatic change detection in 
digital images has become an increasingly important topic in 
the field of satellite image processing. Its applications plays a 
relevant role in environmental studies, which requires 
knowledge about the evolution of slow phenomena and/or 
rapid abrupt changes. Examples of such phenomena are crop 
monitoring, land-cover shift analysis, deforestation 

 
Manuscript received on October 15, 2013. 
V.-E. Neagoe, R.-M. Stoica, and A.-I. Ciurea are with the Department of 

Applied Electronics and Information Engineering, “Politehnica” University of 
Bucharest, Bucharest, Romania (email: victor.neagoe@upb.ro) 

L. Bruzzone is with the Department of Information Engineering and 
Computer Science, University of Trento, Trento, Italy (email: 
lorenzo.bruzzone@ing.unitn.it) 

F. Bovolo is with the Center for Information and Communication 
Technology, Fondazione Bruno Kessler, Trento, Italy (email: bovolo@fbk.eu) 

monitoring, urban growth, flood and fire control [2], [3], [4], 
[5], [6]. The relevance of such kind of analysis is confirmed 
by some activities carried out at European level such as the 
database of land changes between 2000-2006, based on 
standard CORINE land cover categories [7], [8] compiled by 
the European Environmental Agency (EEA). 

In this manuscript the focus is on damage assessment 
related to natural disasters application, such as changes caused 
by earthquakes [9], tsunamis [10], fires [11], etc. In the last 
decades, the frequency of such events has increased 
dramatically [12] therefore there is a rising interest in the 
scientific community for defining methods that can help in 
mitigating their effects and performing an automatic and fast 
assessment of the extension of the damages. 

Numerous algorithms have been proposed for the automatic 
detection of changes [10], [13], [3], [14], [15], [16], [17]. 
These algorithms can be grouped in two large classes: 
supervised and unsupervised techniques. The supervised 
methods require a multitemporal ground truth information, but 
usually achieve higher performance. However the ground truth 
information collection requires a significant effort from the 
economical and practical view point [18]. The unsupervised 
approaches perform a direct comparison of the two 
multitemporal images and do not require any prior information 
about land-cover classes. Some examples of unsupervised 
methods can be found in [18], [1], [16]. The most common 
approach to unsupervised change detection is based on 
thresholding of the image obtained after comparison. However 
more unsupervised complex approaches exist. As an example 
in [13] an unsupervised approach is proposed which is based 
on Support Vector Machine (SVM). Here a pseudo-training set 
for SVM learning phase is generated in an unsupervised way by 
taking advantage of the a priori knowledge on the behavior of 
change and no-change class in the difference image. 

Among the change detection approaches, in the last years 
there have been proposed several techniques based on 
Artificial Neural Networks (ANN) [15], [19], [20], which have 
been previously successfully applied for image analysis and 
segmentation tasks. ANN presents several advantages over 
other classification methods [6], such as: (i) automatic 
adjustment to the classified data, without requiring any a priori 
models; (ii) they can be used as universal function 
approximators; (iii) they can be applied to non-linear and 
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discontinuous data. Among neural networks we recall here the 
interesting example of Self-Organizing Map (SOM) (also 
called Kohonen network) as they have the peculiarity of being 
unsupervised. Neurons in them become specifically tuned to 
classes of patterns through a competitive, unsupervised or self-
organizing learning [21]. 

Starting from the idea to consider the SOM as a cell 
characterizing a specific class, Neagoe et al [22] proposed a 
new neural supervised classification model called Concurrent 
Self-Organizing Maps (CSOM). CSOM represents a collection 
of small SOM modules, which use a global winner-takes-all 
strategy. The mechanism is equivalent to generate by neural 
means an improved training set and to use this virtual training 
set as reference for a Nearest Neighbor (NN) classifier. In [23] 
CSOM model has been applied for static multispectral image 
classification. Here we expand the use of to the detection of 
land-cover changes in time-series of remote sensing images in 
the context of both a supervised and an unsupervised change 
detection. The supervised approach consists of two steps: (i) 
concatenation of multitemporal image features; and (ii) 
classification by CSOM. The unsupervised approach is based 
on four steps: (i) image comparison; (ii) unsupervised 
generation of the pseudo-training set; (iii) concatenation of 
multitemporal image features; and (iv) classification by CSOM. 

II. PROPOSED SUPERVISED CHANGE DETECTION APPROACH 

BASED ON CSOM 

The proposed supervised change detection approach is 
based on: (i) concatenation of multitemporal image features 
(CON); and (ii) Concurrent Self-Organizing Maps (CSOM) 
classification (Fig. 1). We will refer to it as Concatenation-
based Concurrent Self-Organizing Maps (C2SOM). 

 

 
Fig. 1.  Block scheme of the proposed supervised change detection approach. 
 

A. Concatenation 

Feature concatenation is used to build the feature vector to 
be given as input to the CSOM classifier [20]. Let  
்ܣ ൌ ሾܽଵ …ܽ௡ሿ் and ்ܤ ൌ ሾܾଵ …ܾ௡ሿ் be the n-dimensional 
feature vectors characterizing each spatial position in the 
images acquired at time t1 and t2, respectively. After 
concatenation, each spatial position will be modeled by a 2n-
dimensional feature vector ்ܸ defined as 

்ܸ ൌ ሾ்ܣ	்ܤሿ ൌ ሾܽଵ …ܽ௡	ܾଵ …ܾ௡ሿ். (1) 

B. CSOM Classification 

The classification step is performed by the Concurrent Self-
Organizing Maps (CSOM) neural classifier [22], [23] 
extended to the use in the multitemporal domain. To this end 
Concurrent Self-Organizing Maps (CSOMs) combines SOM 
modules in a new complex network, which uses a winner-
takes-all strategy for assigning the output class [22]. The 
number of SOM modules equals the number of classes (for 
change detection, one has two classes). Each SOM is trained 
in an unsupervised manner to correctly classify the patterns of 
one class only (i.e., change or no-change). Thus each SOM is 
trained with the subset of samples having the same class label as 
SOM label (Fig. 2). The global training algorithm is supervised, 
but each SOM uses an unsupervised training technique. 
 

 
Fig. 2.  The CSOM training model. 

 

The CSOM technique is equivalent to substitute the real 
training samples by SOM generated virtual samples and then 
to apply the nearest neighbor (NN) classifier using as 
reference all the pseudo-training samples. After CSOM 
training, each 2n-dimensional input vector is assigned to the 
change or no-change class according to the label of the nearest 
CSOM neuron by minimizing the Euclidean distance. 

III. PROPOSED UNSUPERVISED CHANGE DETECTION 

APPROACH BASED ON CSOM 

 
Fig. 3.  Block scheme of the proposed unsupervised change detection approach. 
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The proposed unsupervised change detection approach is 
based on four steps: (i) image comparison (IC); (ii) 
unsupervised generation of the pseudo-training set (USPS); 
(iii) concatenation of multitemporal image features (CON); 
and (iv) classification by CSOM (Fig. 3). 

A. Multitemporal image comparison (IC) 

Let us consider a generic pixel of the two considered 
n-dimensional images. Comparison is performed in different 
ways according to whether the multitemporal images are 
acquired by active or passive sensors. 

In the case of multispectral images acquired by passive 
sensors comparison can be performed by computing the 
magnitude of the Spectral Change Vectors (SCV) obtained by 
standard Change Vector Analysis (CVA) approach as [18]. 

݀ ൌ 	ඥ∑ ሺܾ௜ െ ܽ௜ሻଶ௡
௜ୀଵ  (2) 

where d is the SCV magnitude image. In such image changed 
samples assume large values, whereas unchanged samples 
assumes small values. 

In the case of images acquired by active sensors like 
Synthetic Aperture Radar (SAR) images comparison is 
commonly performed by applying the log-ratio operator [11]. 
Sample feature vectors are 1-dimensional (n = 1) and the log-
ratio image (lr) is defined as 

ݎ݈ ൌ ݃݋݈
௕భ
௔భ
ൌ ଵܾ݃݋݈ െ  ଵ (3)ܽ݃݋݈

In lr unchanged pixels assumes values around zero and 
changed pixels assume values far from zero. 

B. Unsupervised Selection of the Pseudo-Training Set (USPS) 

The behaviors of change and no change classes are exploited in 
this step to define a pseudo-training set in an unsupervised way to 
be used as input for the next step of classification. The approach 
is based on unsupervised threshold selection [13], [1]. A threshold 
T is first computed that separates changed from unchanged pixel 
[1] according to the Bayes decision. The desired set of pixels with 
a high probability to be assigned to the class of change or no-
changed is obtained by defining an uncertainty region around T 
that identifies highly uncertain pixels [13]. This region includes 
samples having magnitude in [T-δ1, T+δ2]. Sampled showing 
magnitude larger than T+δ2 have a high probability to be 
changed, whereas samples having magnitude smaller than T-δ1 
have a high probability to be unchanged. T is automatically 
estimated from the statistical distribution p(d) of the magnitude 
image. A similar mechanism can be adopted for the analysis of lr. 
Fig. 4 gives an overview of the mechanism. 

 
Fig. 4.  Distribution p(d) of the samples in the SCV magnitude image d and 
relevant decision regions for pseudo-training set definition. 

C. Concatenation and CSOM Classification (C2SOM) 

The third and fourth steps are the same as the ones in 
Sec. II.A. The unsupervised change detection is carried out by 
using the Concurrent Self-Organizing Maps (CSOM) neural 
classifier [15], [22], [23], applied to concatenated vectors. 

IV. EXPERIMENTS AND RESULTS 

A. Experimental set-up 

The two approaches to change detection have been tested on 
three multitemporal datasets. In order to demonstrate its 
effectiveness results achieved with the proposed methods have 
been compared with ones obtained with: Bayes and Nearest 
Neighbor statistical classifiers; MLP neural classifiers; and 
SVM with radial-basis function (RBF) kernel. 

The Bayes (likelihood) classifier [1] performs decision 
according to 

ሺܺ െ ୡሻ்ߤ ൈ ∑ୡ
ିଵ ൈ ሺܺ െ ୡሻߤ െ ሺܺ െ ୬ሻ்ߤ ൈ ∑୬

ିଵ ൈ

	ሺܺ െ ୬ሻߤ ൅ ݈݊
ௗ௘௧∑ౙ
ௗ௘௧∑౤

൏
൐
2݈݊

௉ሺఠౙሻ

௉ሺఠ౤ሻ
 (4) 

where class conditional probability density functions have 
been implicitly considered as being Gaussian distributed. µc, 
µn, ∑c, ∑n, P (ωc)and P(ωn) are the average vectors, the 
covariance matrices and the prior probabilities of change and 
no-change classes, respectively. All the above parameters are 
computed in a supervised way from the training set. 

The Nearest Neighbor (NN) classifier assigns the class by 
computing the distance from the input vector to each of the 
training vectors and by selecting the label of the nearest neighbor. 

MLP classifier is the standard neural network for pattern 
recognition tasks [24]. For change detection, an MLP 
configuration has been considered with 2n input neurons (one for 
each of the features in the concatenated vector) and 2 output 
neurons (one for change class and one for no-change class).Here 
an architecture with one hidden layer has been considered and the 
number of neurons in the hidden layer varied between 5 and 25. 
The learning rate was set to 0.01 and momentum constant to 0.9. 

The Radial Basis Function (RBF) neural network has a 
three layer architecture similar to that of MLP [24]. Here a 
Gaussian activation function for the hidden layer neurons has 
been considered. The RBF kernel spread parameter has been 
varied between 1 and 1000. Due to the nonlinearity of its hidden 
layer activation function, an RBF network can better 
approximate a desired pattern by comparison to MLP. 

Support Vector Machine (SVM) is a supervised machine 
learning classifier based on a nonlinear mapping of the input 
vectors to a higher dimensional space [24]. The mapping is 
done based on a selected kernel function. For the present 
experiments, we have chosen a kernel based on radial basis 
functions (RBF), namely a Gaussian function. Model selection 
has been performed according to a grid search strategy varying 
the spread between 0.001 and 100. 

For the CSOM classifier, two neighborhood map lattices 
were considered: rectangular and hexagonal, combined with 
three different architectures: sheet, cylindrical and toroidal. 
The size range of SOM modules are from 2x2 till 25x25 neurons. 

Change detection performance for the proposed methods 
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and the reference one has been evaluated according to 
standard indexes. In greater detail missed alarms, false alarms 
and total errors have been computed in terms of number of 
pixels. In addition, the overall accuracy (OA), missing alarm 
rate (MAR), false alarm rate (FAR) in percentage have been 
given for each trial. Finally, the kappa accuracy is provided. 

B. Mexico data set 

B1) Dataset description 
We have firstly experimented the proposed change detection 

techniques on the selection of 2 bands (namely 4 and 5) 
acquired by the Thematic Mapper (TM) sensor of the Landsat-5 
satellite. The two images (512x360 pixels with 30 meters 
resolution) were acquired in April 2000 and May 2002 (Figs. 
5(a) and (b)) over a Mexico area [13]. Between the two 
acquisition dates a forest fire destroyed a large part of the forest. 
Reference map has been built by experts according to both in 
filed campaigns and accurate photointerpretation refinement 
The burned area (29506 pixels) represents the changed area in 
our dataset (coded with black color in Fig. 5 (b)). The remaining 
154814 pixels represent the unchanged area. 

 
 (a) (b) 
Fig. 5.  Band 4 of the Landsat-5 TM image on the Mexico area. (a) April 
2000. (b) May 2002. 
 

B2) Results of the C2SOM Supervised Change Detection Model 
for Mexico Dataset 

We have used a selection of 2000 pixels for the training set, 
out of which 1000 are labeled as changed and 1000 as 
unchanged. These represent 1.09% of the total pixels. 
The remained 182320 pixels (98.91%) are used for testing. 

The first set of experiments aimed to compare CSOM 
classifier and reference classifiers taking into consideration 
their results in the best OA and MAR for the considered data 
set. Also, the optimization of the CSOM architecture and size 
has been performed at this stage. Tables I-IV show the results. 

TABLE I 
BEST OVERALL ACCURACY (OA) AS A FUNCTION OF CLASSIFIER TYPE 

(SUPERVISED APPROACH-MEXICO DATASET). 

 
 

TABLE II 
BEST MISS ALARM RATE (MAR) AS A FUNCTION OF CLASSIFIER TYPE 

(SUPERVISED APPROACH-MEXICO DATASET). 

 

TABLE III 
BEST OVERALL ACCURACY (OA) AS A FUNCTION OF CSOM ARCHITECTURE 

(MAR<25%) (SUPERVISED APPROACH-MEXICO DATASET). 

 
 

TABLE IV 
BEST MISS ALARM RATE (MAR) AS A FUNCTION OF CSOM ARCHITECTURE 

(OA>80%) (SUPERVISED APPROACH-MEXICO DATASET). 

 
 

The best results have been obtained by the proposed CSOM 
classifier, with a 97.73% Overall Accuracy and 1.64 % Miss 
Alarm Rate. The optimum CSOM architecture has proved to be 
the hexagonal sheet with modules of 20x8/16x3, maximizing 
both OA and Kappa. The best (minimum) MAR is obtained 
using a rectangular toroid with module sizes of 12x20/16x25. 

The best benchmark classifiers reach OA less than the CSOM 
performance (97.73%), namely, between 97.15% for SVM, 
97.16% for MLP and 97.20% for RBF. For the MAR, the 
advantage of CSOM over the benchmark classifiers is more 
significant, the nearest neighbor of CSOM being MLP with 
2.25% (by comparison to 1.64% for CSOM). 

We have also considered the evolution of the OA and MAR 
scores for various SOM module sizes, to deduce a potential 
correlation. Figs. 6 and 7 display the evolution of the two 
performance indicators for square SOM modules, in the size 
range from 5x5 to 20x20 neurons. By increasing the SOM size, 
one obtains a better OA and a better MAR. 

One can remark that CSOM leads also to the best kappa 
accuracy of 0.915. 

 
Fig. 6.  Miss Alarm Rate (MAR) for different CSOM architectures as a function 
of SOM module size (Supervised approach-Mexico dataset) (lower is better) 

 

 
Fig. 7.  Overall accuracy (OA) for different CSOM architectures  

(Supervised approach-Mexico dataset) 
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Fig. 8 shows as an example the change detection map 
obtained by using the CSOM classifier that resulted in the best 
overall accuracy. 
 

 
 (a) (b) 
Fig. 8.  (a) Change detection map obtained by the supervised approach for 
Mexico dataset using CSOM (hexagonal sheet with module sizes 20x8/16x3). 
(b) Reference map (black pixels are changed; white pixels are unchanged). 
 

B3) Results of the IC-USPS –C2SOM Unsupervised Change 
Detection Model for Mexico Dataset 

The unsupervised selection of the pseudo-training set 
(USPS) selected 19798 changed pixels, 106484 unchanged 
pixels, and 58038 unlabeled pixels. The selected changed and 
unchanged pixels represent the pseudo-training set. The test 
set contains all the image pixels, labeled according to the truth 
reference map. 

The experimental results of the proposed unsupervised 
approach for change detection are given in Tables V-VIII. The 
change map obtained by the best classifier (CSOM with 
symmetrical rectangular cylinder modules of 12 x 12) is 
shown in Fig. 9. 

 
TABLE V 

BEST OVERALL ACCURACY (OA) AS A FUNCTION OF CLASSIFIER TYPE 
 (UNSUPERVISED APPROACH-MEXICO DATASET) 

 
 

TABLE VI 
BEST MISSED ALARM RATE (MAR) AS A FUNCTION OF CLASSIFIER TYPE 

(UNSUPERVISED APPROACH-MEXICO DATASET) 

 
 

TABLE VII 
BEST OVERALL ACCURACY (OA) AS A FUNCTION OF CSOM TOPOLOGY 

(MAR<25%) (UNSUPERVISED APPROACH-MEXICO DATASET) 

 

TABLE VIII 
BEST MISSED ALARM RATE (MAR) AS A FUNCTION OF CSOM TOPOLOGY 

(OA>80%) (UNSUPERVISED APPROACH-MEXICO DATASET) 

 
 

 
 (a) (b) 
Fig. 9.  (a) Change detection map obtained by the unsupervised approach 
for Mexico dataset using CSOM (rectangular-cylindrical modules of sizes 
12x12/12x12). (b) Reference map (black pixels are changed; white pixels 
are unchanged). 

 

From Tables V and VI one can deduce that CSOM leads to 
best performances by comparison to the considered 
benchmark classifiers. The best overall accuracy result of 
97.78% and the best Kappa accuracy of 0.917 have been 
obtained for a CSOM classifier (Table V). The best missed 
alarm rate of 3.83% (Table VI) corresponds also to CSOM 
classifier. Tables VII and VIII give the best performances (OA 
and respectively MAR) as a functions of CSOM module 
architecture and neighborhood lattice. The best OA is obtained 
using a CSOM architecture corresponding to a rectangular-
cylindrical topology with symmetrical modules of sizes 
11x19. The best (minimum) MAR is obtained using a 
rectangular lattice and toroidal architecture with symmetrical 
modules of sizes 25x25. 

C. Fukushima dataset 

C1) Fukushima dataset description 
The second data set is composed of two 400 x 400 pixel 

radar brightness images (StripMap imaging mode, up to 3 
meters resolution) acquired by TSX-1 sensor of TerraSAR-X 
Earth Observation satellite over the Fukushima region in 
Japan (Figs. 10(a) and (b)). The first image is from March 
2009, while the second is from May 2011. The region was hit 
by a tsunami in March 2011, which caused drastic 
modifications to the landscape. The dataset contains 46836 
pixels of change (~29.27%) and 113164 pixels of unchanged 
(~70.73%), the reference map being labeled by experts using a 
photointerpretation method. 
 

 
 (a) (b) 
Fig. 10.  Fukushima TerraSAR-X image sequence. (a) March 2009. (b) May 2011. 
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C2) Results of the C2SOM Supervised Change Detection Model 
for Fukushima Dataset 

Similar to the Mexico dataset, we have used a selection of 
2000 pixels (1.25% of the total) for the training set, 552 
labeled as change (~27.6% of the training set) and 1448 labels 
as no-change (~72.4% of the training set). The rest of 158000 
pixels (98.75%) are used for testing. 

Tables IX-XII and Figs. 11-13 show the results obtained by 
applying the C2SOM supervised model on the Fukushima 
SAR dataset. The results confirm the advantage of the CSOM 
classifier for change detection. 

 

TABLE IX 
BEST OVERALL ACCURACY (OA), AS A FUNCTION OF CLASSIFIER TYPE 

(SUPERVISED APPROACH-FUKUSHIMA DATASET). 

 
 

TABLE X 
BEST MISS ALARM RATE (MAR) AS A FUNCTION OF CLASSIFIER TYPE 

(SUPERVISED APPROACH-FUKUSHIMA DATASET). 

 
 

TABLE XI 
BEST TOTAL OVERALL ACCURACY (OA) AS A FUNCTION OF CSOM 

ARCHITECTURE (MAR<25%) (SUPERVISED APPROACH-FUKUSHIMA DATASET). 

 
 

TABLE XII 
BEST MISS ALARM RATE (MAR) AS A FUNCTION OF CSOM ARCHITECTURE 

(OA>80%) (SUPERVISED APPROACH-FUKUSHIMA DATASET). 

 
 

From Tables IX and X one can deduce that CSOM classifier 
maximizes Overall Accuracy (89.58%) and Kappa accuracy 
(0.748) for a rectangular sheet topology of module sizes 
5x7/3x7. From Tables X and XII one can remark that CSOM 
also minimizes Miss alarm rate (5.72%), for CSOM modules 
of rectangular sheet with sizes 5x8/10x10. 

Figs. 11 and 12 display the evolution of the OA and MAR 
indicators for square SOM modules, in the size range from 
5x5 to 20x20 neurons. 

 
Fig. 11.  Miss Alarm Rate (MAR) for different CSOM architectures as a 
function of SOM module size (Supervised approach-Fukushima dataset) 
(lower is better) 
 

 
Fig. 12.  Overall Accuracy (OA) for different CSOM architectures 
(Supervised approach-Fukushima dataset) 
 

Fig. 13 shows the change detection map obtained by using the 
CSOM classifier that resulted in the best overall/kappa accuracy. 

 

 
 (a)  (b) 
Fig. 13.  (a) Change detection map obtained by the supervised approach with 
Fukushima dataset using CSOM (rectangular sheet with 5x7/3x7 size). (b) Reference 
change detection map (black pixels are changed; white pixels are unchanged). 

 

C3) Results of the IC-USPS –C2SOM Unsupervised Change 
Detection Model for Fukushima SAR Dataset 

As a result of unsupervised selection of the pseudo-training 
set (USP), one obtains 42281 changed pixels, 93719 
unchanged pixels, and 24 000 unlabeled pixels. The test set 
contains all the image pixels, visually labeled to generate a 
kind of reference map. 

The experimental results of the proposed unsupervised 
approach are given in Tables XIII-XVI. The change map 
obtained by the best classifier (CSOM with symmetrical hexa 
sheet modules of 6 x 18 neurons) is shown in Fig. 14. 

 
TABLE XIII 

BEST OVERALL ACCURACY (OA) AS A FUNCTION OF CLASSIFIER TYPE 

(UNSUPERVISED APPROACH-FUKUSHIMA DATASET). 
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TABLE XIV 
BEST MISSED ALARM RATE (MAR) AS A FUNCTION OF CLASSIFIER TYPE 

(UNSUPERVISED APPROACH-FUKUSHIMA DATASET). 

 
 

TABLE XV 
BEST OVERALL ACCURACY (OA) AS A FUNCTION OF CSOM TOPOLOGY 

(MAR<25%) (UNSUPERVISED APPROACH-FUKUSHIMA DATASET). 

 
 

TABLE XVI 
BEST MISSED ALARM RATE (MAR) AS A FUNCTION OF CSOM TOPOLOGY 

(OA>80%) (UNSUPERVISED APPROACH-FUKUSHIMA DATASET). 

 
 

 
 (a) (b) 
Fig. 14.  (a) Change-detection map obtained by the unsupervised approach 
with the Fukushima dataset by using CSOM (hexagonal sheet symmetrical 
modules of 6x16 neurons). (b) Reference map. (black pixels are changed; 
white pixels are unchanged). 
 

From Tables XIII - XVI one can deduce that CSOM leads 
to best performances by comparison to the considered 
benchmark classifiers. The best overall accuracy result of 
84.19% and the best Kappa accuracy of 0.627 have been 
obtained for CSOM classifier (Table XIII). The best missed 
alarm rate of 20.06% (Table XIV) corresponds also to the 
CSOM classifier. Tables XV and XVI give the best 
performances (OA and respectively MAR) as a functions of 
CSOM module architecture and neighborhood lattice. The best 
OA is obtained using a CSOM architecture corresponding to a 
hexagonal sheet topology with symmetrical modules of size 
6x16. The minimum MAR is obtained using a rectangular-
toroidal architecture with symmetrical modules of sizes 6x12. 

V. CONCLUDING REMARKS 

The paper addresses a problem of high interest with large 
applications in Geomonitoring, namely change detection in 
remote sensing mutitemporal images. The novelty of the paper 
consists in extending the use of Concurrent Self-Organizing 

Maps (CSOM) classifier to change detection. Two CSOM-
based approaches have been proposed, one for supervised and 
one for unsupervised change detection. The methods have 
been validated on two datasets, first one being obtained by a 
passive sensor (TM of LANDSAT-5) and the second dataset 
being acquired by an active sensor (TSX-1 of TerraSAR-X). 

Experimental results confirms the effectiveness of the CSOM-
based supervised/unsupervised change detection methods when 
compared with standard MLP-NN, RBF-NN, and SVM in terms 
of overall accuracy, kappa accuracy and error rate. 

As future work direction, we prepare a fully neural model for 
unsupervised change detection, by substituting the Bayes-ME 
stage of the pseudo-training set selection with a neural technique. 
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